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Outline
• Motivation: importance of human error during 

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans
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Motivation: human error is important
• Half of system failures are from human error

– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human 

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993): 
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Human error is important (2)
• More data: telephone network failures 

– FCC records, 1992-4; from Kuhn, Computer 30(4), ’97

– half of outages, outage-minutes are human-related
» about 25% are direct result of maintenance errors by 

phone company workers
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Don’t just blame the operator!
• Psychology shows that human errors are 
inevitable [see J. Reason, Human Error, 1990]

– humans prone to slips & lapses even on familiar tasks
» 60% of errors are on “skill-based” automatic tasks

– also prone to mistakes when tasks become difficult
» 30% of errors on “rule-based” reasoning tasks
» 10% of errors on “knowledge-based” tasks that require 

novel reasoning from first principles

• Allowing human error can even be beneficial
– mistakes are a part of trial-and-error reasoning

» trial & error is needed to solve knowledge-based tasks
» fear of error can stymie innovation and learning
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Outline
• Motivation: importance of human error during 

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans
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Recovery from human error
• ROC principle: recovery from human error, 
not avoidance
– accepts inevitability of errors
– promotes better human-system interaction by 

enabling trial-and-error
» improves other forms of system recovery

• Recovery mechanism: Undo
– ubiquitous and well-proven in productivity applications
– unusual in system maintenance

» primitive versions exist (backup, standby machines, ...)
» but not well-matched to human error or interaction 

patterns



Slide 8

Outline
• Motivation: importance of human error during 

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans



Slide 9

Undo paradigms
• An effective undo paradigm matches the needs 
of its target environment
– cannot reuse existing undo paradigms for system 

maintenance
• We need a new undo paradigm for maintenance

– plan:
» lay out the design space
» pick a tentative undo paradigm
» carry out experiments to validate the paradigm

• Underlying assumption: service model
– single application
– users access via well-defined network requests
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Issue #1: Choice of undo model
• Undo model defines the view of past history
• Spectrum of model options:
simplicity flexibility
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MS Office emacs

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?
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• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?
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More undo issues
2) Representation

– does undo act on states or actions?
– how are the states/actions named?

3) Selection of undo points
– granularity: 

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

2) Representation
– does undo act on states or actions?
– how are the states/actions named? TBD

3) Selection of undo points
– granularity:

» undo points at each state change/action?  
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

• Tentative maintenance undo choices in red
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More undo issues (2)
4) Scope of undo

– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

4) Scope of undo
– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

– tentative maintenance undo goals in red
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More undo issues (3)
5) Transparency to service user

– ideally:
» undo of system state preserves user data & updates
» user always sees consistent, forward-moving timeline
» undo has no user-visible impact on data or service  

availability
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Context: other undo mechanisms
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Implementing maintenance undo
• Saving state: disk

– apply snapshot or logging techniques to disk state
» e.g., NetApp- or VMware-style block snapshots, or LFS
» all state, including OS, application binaries, config files

– leverage excess of cheap, fast storage
– integrate “time travel” with native storage mechanism 

for efficiency

• Saving state: hardware
– periodically discover and log hardware configuration
– can’t automatically undo all hardware changes, but can 

direct administrator to restore configuration
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Implementing maintenance undo (2)
• Providing transparency

– queue & log user requests at edge of system, in format 
of original request protocol

– correlate undo points to points in request log
– snoop/replay log to satisfy user requests during undo

time --->

... <--- user requestsR
E
Q

R
E
Q

R
E
Q

u current (real)
time

undo
invokedsystem

logical time

• An undo UI
– should visually display branching structure
– must provide way to name and select undo points, 

show changes between points
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Status and plans
• Status

– starting human experiments to pin down undo paradigm
» subjects are asked to configure and upgrade a 3-tier 

e-commerce system using HOWTO-style documentation
» we monitor their mistakes and identify where and how 

undo would be useful
– experiments also used to evaluate existing undo 

mechanisms like those in GoBack and VMware
• Plans

– finalize choice of undo paradigm
– build proof-of-concept implementation in Internet 

email service on ROC-1 cluster
– evaluate effectiveness and transparency with further 

experiments
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