
Slide 1

Addressing Human Error
with Undo

Aaron Brown

ROC Retreat, June 2001

Slide 2

Outline
• Motivation: importance of human error during

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans

Slide 3

Motivation: human error is important
• Half of system failures are from human error

– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

53%

18%

18%
10%

Slide 4

Human error is important (2)
• More data: telephone network failures

– FCC records, 1992-4; from Kuhn, Computer 30(4), ’97

– half of outages, outage-minutes are human-related
» about 25% are direct result of maintenance errors by

phone company workers

Number of Outages

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure

Slide 5

Don’t just blame the operator!
• Psychology shows that human errors are
inevitable [see J. Reason, Human Error, 1990]

– humans prone to slips & lapses even on familiar tasks
» 60% of errors are on “skill-based” automatic tasks

– also prone to mistakes when tasks become difficult
» 30% of errors on “rule-based” reasoning tasks
» 10% of errors on “knowledge-based” tasks that require

novel reasoning from first principles

• Allowing human error can even be beneficial
– mistakes are a part of trial-and-error reasoning

» trial & error is needed to solve knowledge-based tasks
» fear of error can stymie innovation and learning

Slide 6

Outline
• Motivation: importance of human error during

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans

Slide 7

Recovery from human error
• ROC principle: recovery from human error,
not avoidance
– accepts inevitability of errors
– promotes better human-system interaction by

enabling trial-and-error
» improves other forms of system recovery

• Recovery mechanism: Undo
– ubiquitous and well-proven in productivity applications
– unusual in system maintenance

» primitive versions exist (backup, standby machines, ...)
» but not well-matched to human error or interaction

patterns

Slide 8

Outline
• Motivation: importance of human error during

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans

Slide 9

Undo paradigms
• An effective undo paradigm matches the needs
of its target environment
– cannot reuse existing undo paradigms for system

maintenance
• We need a new undo paradigm for maintenance

– plan:
» lay out the design space
» pick a tentative undo paradigm
» carry out experiments to validate the paradigm

• Underlying assumption: service model
– single application
– users access via well-defined network requests

Slide 10

Issue #1: Choice of undo model
• Undo model defines the view of past history
• Spectrum of model options:
simplicity flexibility

multiple
linear

undo/redo
branching
undo/redo
w/deletion

single
undo

single
undo/redo

multiple
linear undo

linearized
branching
undo/redo

branching
undo/redo

MS Office emacs

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?

54

3

2
10 u

u

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?

• Tentative choice for
maintenance undo

multiple
linear

undo/redo
branching
undo/redo
w/deletion

single
undo

single
undo/redo

multiple
linear undo

linearized
branching
undo/redo

branching
undo/redo

trial-and-error history pattern

Slide 11

More undo issues
2) Representation

– does undo act on states or actions?
– how are the states/actions named?

3) Selection of undo points
– granularity:

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

2) Representation
– does undo act on states or actions?
– how are the states/actions named? TBD

3) Selection of undo points
– granularity:

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

• Tentative maintenance undo choices in red

Slide 12

More undo issues (2)
4) Scope of undo

– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

4) Scope of undo
– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

– tentative maintenance undo goals in red

Slide 13

More undo issues (3)
5) Transparency to service user

– ideally:
» undo of system state preserves user data & updates
» user always sees consistent, forward-moving timeline
» undo has no user-visible impact on data or service

availability

Slide 14

Context: other undo mechanisms

highsingle txn,
app-level

automatic
checkpoints

hybrid,
unnamedsingle undoDBMS logging

(for txn abort)

lowdisk (all),
single server

manual
checkpoints

state,
temporal naming

multiple
linear undo

Netapp
Snapshots

low-
medium

disk (all),
single node

automatic
checkpoints

state,
temporal naming

linearized
branching
undo/redo

GoBack®

lowdisk (1 FS),
single node

manual
checkpoints

state
ad-hoc naming

single or
multiple

linear undo
Tape backup

highentire system
varies; usu.
automatic

checkpoints
state,

unnamedsingle undoGeoplex site
failover

high
all disk & HW,

all nodes &
network

automatic
checkpoints

state,
naming TBD

branching
undo/redo

Desired
maintenance-
undo semantics

Trans-
parencyScopeUndo-point

selectionRepresentationUndo
modelUndo mech.

Design axis

Slide 15

Implementing maintenance undo
• Saving state: disk

– apply snapshot or logging techniques to disk state
» e.g., NetApp- or VMware-style block snapshots, or LFS
» all state, including OS, application binaries, config files

– leverage excess of cheap, fast storage
– integrate “time travel” with native storage mechanism

for efficiency

• Saving state: hardware
– periodically discover and log hardware configuration
– can’t automatically undo all hardware changes, but can

direct administrator to restore configuration

Slide 16

Implementing maintenance undo (2)
• Providing transparency

– queue & log user requests at edge of system, in format
of original request protocol

– correlate undo points to points in request log
– snoop/replay log to satisfy user requests during undo

time --->

... <--- user requestsR
E
Q

R
E
Q

R
E
Q

u current (real)
time

undo
invokedsystem

logical time

• An undo UI
– should visually display branching structure
– must provide way to name and select undo points,

show changes between points

Slide 17

Outline
• Motivation: importance of human error during

system maintenance

• Challenge: providing recovery from human error

• Solution: undo
– defining an undo paradigm for system administration
– implementation techniques for sysadmin undo

• Status and plans

Slide 18

Status and plans
• Status

– starting human experiments to pin down undo paradigm
» subjects are asked to configure and upgrade a 3-tier

e-commerce system using HOWTO-style documentation
» we monitor their mistakes and identify where and how

undo would be useful
– experiments also used to evaluate existing undo

mechanisms like those in GoBack and VMware
• Plans

– finalize choice of undo paradigm
– build proof-of-concept implementation in Internet

email service on ROC-1 cluster
– evaluate effectiveness and transparency with further

experiments

	Addressing Human Errorwith Undo
	Outline
	Motivation: human error is important
	Human error is important (2)
	Don’t just blame the operator!
	Outline
	Recovery from human error
	Outline
	Undo paradigms
	Issue #1: Choice of undo model
	More undo issues
	More undo issues (2)
	More undo issues (3)
	Context: other undo mechanisms
	Implementing maintenance undo
	Implementing maintenance undo (2)
	Outline
	Status and plans

