4

y N

RECOVERY-ORIENTED COMPUTING

Rewind, Repair, Replay:

Three R's to cope with operator error

Aaron Brown

UC Berkeley ROC Group
abrown@cs.berkeley.edu

IBM Almaden, 22 March 2002

Outline

- Recovery-Oriented Computing background

* Motivation: the importance of human operators
* The Three R's: human-centric recovery

* 3R’s challenges

- Implementing and evaluating the 3R's

- Status, future directions, conclusions

ROC motivation: the past 15 years

* Goal #1: Improve performance
* Goal #2: Improve performance
* Goal #3: Improve cost-performance

- Assumptions

- Humans are perfect (they don't make mistakes during
installation, wiring, upgrade, maintenance or repair)

- Software will eventually be bug free
(Hire better programmers!)

- Hardware MTBF is already very large (~100 years
between failures), and will continue to increase

- Maintenance costs irrelevant vs. Purchase price
(maintenance a function of price, so cheaper helps)

Slide 3

Where we are today

* MAD TV, "Antiques Roadshow, 3005 AD"

VALTREX:

"Ah ha. You paid 7 million Rubex too much. My
suggestion: beam it directly into the disposal cube.

These pieces of crap crashed and froze so frequently
that people became violent!

Hargh!”

B7 4
"Worthles e . O Rubex”

Recovery-Oriented Computing
Philosophy

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres (“Peres’s Law”)

* People/HW/SW failures are facts, not problems
* Recovery/repair is how we cope with them

- Improving recovery/repair improves availability
- UnAvailability = MTTR
MTTF

- 1/10th MTTR just as valuable as 10X MTBF

* ROC also helps with maintenance/TCO

- since major Sys Admin job is recovery after failure

» Since TCO is 5-10X HW/SW, sacrifice disk/DRAM/
CPU for recovery if necessary

(assuming MTTR much less than MTTF)

Slide 5

ROC approach

1. Collect data to see why services fail

2. Create benchmarks to measure recovery
- use failure data as workload for benchmarks

- benchmarks inspire and enable researchers /
humiliate companies to spur improvements

3. Create and Evaluate techniques to help
recovery

- identify best practices of Internet services

- ROC focus on fast repair (they are facts of life)
vs. FT focus longer time between failures (problems)

- make human-machine interactions synergistic vs.
antagonistic

Slide 6

EEEEEEEEEEEEEEEEEEEEEEEEEE

Outline

- Recovery-Oriented Computing background

* Motivation: the importance of human operators
* The Three R's: human-centric recovery

* 3R’s challenges

- Implementing and evaluating the 3R's

- Status, future directions, conclusions

Human error

* Human operator error is the leading cause of
dependability problems in many domains

1% Sources of Failure 0%

[1)
8% 34%

@ Operator
B Hardware
O Software
590, [O Overload

51%

22%

15%

Public Switched Telephone Network Average of 3 Infernet Sites

» Operator error cannot be eliminated
- humans inevitably make mistakes: "to err is human”
- automation irony tells us we can't eliminate the human

Source: D. Patterson et al. Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, _
. and Case Studies, UC Berkeley Technical Report UCB//CSD-02-1175, March 2002, Slide 8

NNNNNNNNNNNNN

The ironies of automation

- Automation doesn't remove human influence
from system

- shifts the burden from operator to designer
» designers are human too, and make mistakes
» if designer isn't perfect, human operator still needed

* Automation can make operator’s job harder

- reduces operator’s understanding of the system
» automation increases complexity, decreases visibility
» no opportunity to learn without day-to-day interaction

- uninformed operator still has o solve exceptional
scenarios missed by (imperfect) designers

» exceptional situations are already the most error-prone

N _ Source: J. Reason, Human Error, Cambridge University Press, 1990.

EEEEEEEEEEEEEEEEEEEEEEEEEE

A science fiction analogy

* Full automation

B3 .

HAL 9000 (2001)

- Suffers from effects of
the automation ironies

- system is opaque to humans

- onl?/ solution o unanticipated
_ failure is to pull the plug?

- Human-aware automation

nterprie compute (35)

+ 24'™h-century engineer is
like today's SysAdmin

- a human diagnoses & repairs
computer problems

- automation used in human-

operated diagnostic fools_

EEEEEEEEEEEEEEEEEEEEEEEEEE

Matching recovery & human behavior

* Need a recovery mechanism that matches the
way humans behave

- tolerate inevitable operator errors
» even with correct intentions, humans still make "slips”

- harness hindsight
» ~70% of human errors are immediately self-detected
» non-human failures are often avoidable in hindsight
» e.g., misconfigurations, break-ins, viruses, etc.
- provide retroactive repair for these failures
- support trial & error
» today's systems are too complex to understand a priors
» allow exploration, learning from mistakes

Slide 11

EEEEEEEEEEEEEEEEEEEEEEEEEE

Outline

- Recovery-Oriented Computing background

* Motivation: the importance of human operators
* The Three R's: human-centric recovery

* 3R’s challenges

- Implementing and evaluating the 3R's

- Status, future directions, conclusions

"Three R's” Recovery

* Time travel for system operators

* Three R's for recovery
- Rewind: roll all system state backwards in time

- Repair: change system to prevent failure

» e.g., fix latent error, retry unsuccessful operation, install
preventative patch

- Replay: roll system state forward, replaying end-user
interactions lost during rewind

* All three R's are critical
- rewind enables undo
- repair lets user/administrator fix problems
- replay preserves updates, propagates fixes forward

Example 3R's scenarios

* Direct operator errors
- system misconfiguration
» configuration file change, email filter installation, ...

- accidental deletion of data

» “rm -rf /", deleting a user's email spool, reversed copy
during data reorganization, ...

- Retroactive repair

- mitigate external attacks

» retroactively install virus/spam filter on email server;
effects are squashed on replay

- repair broken software installations

» mis-installed software patch, installation of software that
corrupts data, software upgrade that slows performance

EEEEEEEEEEEEEEEEEEEEEEEEEE

Context

* Traditional Undo gives only two R's
- rewind & repair or rewind & replay
- e.g., backup/restore, checkpointing

* RDBMS log-based recovery

- typically implements two R's: rewind/replay used to
recover from crashes, deadlock, etc.

» but no opportunity for repair during rewind/replay cycle

- DB logging mechanisms could give all 3 R's
» but not at whole-system level

EEEEEEEEEEEEEEEEEEEEEEEEEE

Outline

- Recovery-Oriented Computing background
* Motivation: the importance of human operators
* The Three R's: human-centric recovery

» 3R's challenges

- delineating state preserved by replay
- externalized state

- granularity

- history model

- Implementing and evaluating the 3R's
- Status, future directions, conclusions

Slide 16

Challenge #1: state delineation

* What state changes does Replay restore?

- ideal: only updates that are important to the end-user
» allows effects of repairs to propagate forward

* Replay should preserve intent of updates

- not physical manifestation in state
» repair might alter the physical representation

- achieved by protocol-level logging/replay of updates
» e.g.,, SMTP, IMAP, JDBC/SQL, XML/SOAP, ...
» argues for proxy-based undo implementations

* Replay ignores prior repairs lost during rewind
- too difficult to record intent of repairs (for now)

Challenge #2: externalized state

* The equivalent of the "time travel paradox”

- the 3R cycle alters state that has previously been
seen by an external entity (user or another computer)

- produces inconsistencies between internal and
external views of state after 3R cycle

+ Examples
- a formerly-read/forwarded email message is altered
- a failed request is now successful or vice versa

- item availability estimates change in e-commerce,
affecting orders

* No complete fix; solutions just manage the
inconsistency

Slide 18

Externalized state: solutions

» Ignore the inconsistency
- let the (human) user tolerate it

- appropriate where app. already has loose consistency
» e.g., email message ordering, e-commerce stock estimates

+ Compensating/explanatory actions
- leave the inconsistency, but explain it o the user
- appropriate where inconsistency causes confusion but
not damage

» e.g., 3R’s delete an externalized email message;
compensating action replaces message with a new message
explaining why the original is gone

» e.g., 3R's cause an e-commerce order to be cancelled:;
compensating action refunds credit card and emails user

EEEEEEEEEEEEEEEEEEEEEEEEEE

Externalized state: solutions (2)
» Expand the boundary of Rewind

- 3R cycle induces rollback of external system as well
» external system reprocesses updated externalized data

- appropriate when externalized state chain is short;
external system is under same administrative domain

» danger of expensive cascading rollbacks; exploitation

* Delay execution of externalizing actions
- allow inconsistency-free undo only within delay window

- appropriate for asynchronous, non-time-critical
events

» e.g., sending mailer-daemon responses in email or
delivering email to external hosts

Slide 20

EEEEEEEEEEEEEEEEEEEEEEEEEE

Challenge #3: granularity

* Making 3R’s available at multiple granularities
- user, system, cluster, service

- Why multiple granularities?

- efficiency and scalability
» limit rollbacks to minimal affected state

- allow users to repair their own problems, reducing
operator's burden

- Difficulties

- coordination of rewind/replay with concurrent undos
at different granularities

- respecting dependencies between shared and per-user
state

Slide 21

Challenge #4: history model

* How should the 3R-altered timeline be
presented to the operator?

- single rewind/replay?
- linearized history?

- full branching history 0 A
with all time points available?

- without replaying repairs, best option is multiple-
rewind, single-replay

* What do users see during 3R cycle?

- read-only snapshot of unwound state?
» easy to implement

- synthesized view of up-to-date state?
» easier for users to understand

Slide 22

EEEEEEEEEEEEEEEEEEEEEEEEEE

Outline

- Recovery-Oriented Computing background

* Motivation: the importance of human operators
* The Three R's: human-centric recovery

* 3R’s challenges

- Implementing and evaluating the 3R's

- Status, future directions, conclusions

Prototype implementation:
an undoable email service

* Why email?

- essential "nervous system” for enterprises, individuals
- most popular Internet service

- good balance of hard state and relaxed consistency

- many opportunities for human error, retroactive repair

* Prototype goals

- demonstrate feasibility and measure overhead

- explore 3R challenges, especially externalized state
- use as testbed for developing recovery benchmarks

Slide 24

3R's Email Prototype

* Prototype architecture
- proxy implementation wrapping existing mail server

- hoh-overwriting storage for rewind
- SMTP and IMAP logging for replay

3R Layer
[orate] (Email Server
Includes:
£y \‘58 / - user state
SMTP R 3R ‘/ - mailboxes
- P - application
roxy - operating system

7'y

\\\ Y
COnf - Non-overwriting
Storage

Slide 25

Evaluating the three R's

* Traditional performance benchmarks don't help
* We're developing recovery benchmarks

normal behavior
L J(99% conf.)

QoS Metric

perturbation

recovery time
0 Time

- Human operators participate in benchmarks

- diagnose problems, perform repairs, carry out
maintenance tasks

- mistakes act as an additional perturbation source

- we measure dependability impact, human error rate,
required human interaction time

Slide 26

EEEEEEEEEEEEEEEEEEEEEEEEEE

Outline

- Recovery-Oriented Computing background

* Motivation: the importance of human operators
* The Three R's: human-centric recovery

* 3R’s challenges

- Implementing and evaluating the 3R's

- Status, future directions, conclusions

Status and future directions

* Status

- currently implementing prototype in email service

- evaluating solutions to externalized state problem for
email

- starting feasibility studies for recovery benchmarks

- Future directions

- generalize 3R model
» examine other applications
» extend to lower levels of system: storage, HW

» develop model of state organization for 3R-capable
systems

- investigate granularities and richer history models

Slide 28

Conclusions

* Peres’s law suggests new focus on recovery
* The three R's provide a recovery mechanism for
today's dependability problems
- human operator error
- unanticipated failure compounded by operator reaction
- maybe even external attack

+ 3R’s are synergistic with operator behavior
- assume mistakes
- quick recovery even without diagnosis
- allow trial & error exploration, retroactive repair

* Many challenges remain in model, implementation

For more information
* Web: http://roc.cs.berkeley.edu/

- ROC overview, talks, papers

- Drafts of workshop papers on the 3R's, recovery
benchmarks, real-world failure data analysis

* Email: abrown@cs.berkeley.edu

Slide 30

Backup Slides

Discussion topics

+ Externalized state—do solutions generalize?
» Comparison with existing recovery systems
* Evaluation: tasks for benchmarks?

* Prototype: what non-overwriting storage layer?

Slide 32

A more technical perspective...

- Services as model for future of IT

* Availability is now vital metric for services

- near-100% availability is becoming mandatory
» for e-commerce, enterprise apps, online services, ISPs

- but, service outages are frequent

» 65% of I'T managers report that their websites were
unavailable to customers over a 6-month period

»+ 25%: 3 or more outages
- outage costs are high
» downtime costs of $14K - $6.5M per hour

» social effects: negative press, loss of customers who
click over” to competitor

SN Source: InternetWeek 4/3/2000

EEEEEEEEEEEEEEEEEEEEEEEEEE

Downtime Costs (per Hour)

- Brokerage operations $6,450,000
- Credit card authorization $2,600,000
- Ebay (1 outage 22 hours) $225,000
- Amazon.com $180,000
+ Package shipping services $150,000
 Home shopping channel $113,000
- Catalog sales center $90,000
- Airline reservation center $89,000
- Cellular service activation $41,000
- On-line network fees $25,000

- ATM service fees $14,000

. Sources: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel 2000, p.8.
N "...based on a survey done by Contingency Planning Research.”

EEEEEEEEEEEEEEEEEEEEEEEEEE

ACME: new goals for the future
- Availability

- 24x7 delivery of service to users

* Changability

- support rapid deployment of new software, apps, UI
* Maintainability

- reduce burden on system administrators

- provide helpful, forgiving SysAdmin environments

* Evolutionary Growth

- allow easy system expansion over time without
sacrificing availability or maintainability

Slide 35

Where does ACME stand today?

» Availability: failures are common
- Traditional fault-tolerance doesn't solve the problems
* Changability

- In back-end system tiers, software upgrades
difficult, failure-prone, or ignored

- For application service over WWW, daily change
* Maintainability
- system maintenance environments are unforgiving
- human operator error is single largest failure source

- Evolutionary growth
- 1U-PC cluster front-ends scale, evolve well
- back-end scalability difficult, operator intensive

Slide 36

EEEEEEEEEEEEEEEEEEEEEEEEEE

ROC Part I: Failure Data

Lessons about human operators

* Human error is largest single failure source
- HP HA labs: human error is #1 cause of failures (2001)
- Oracle: half of DB failures due to human error (1999)

- Gray/Tandem: 42% of failures from human
admmls’rr'a’ror errors (1986)

- Murphy/Gent study of VAX systems (1993):
Other

Causes of system crashes
W100%) /
< 0% ¢ 18%

System
management

53%

Software
failure

. Hardware
failure Slide 37

1993

Time (1985-1993)

Blocked Calls: PSTN in 2000

119
/o 38% Human error

Overs 209 of al

load _ oOfa

8% }c—':r:mnn (blocked calls
sw pany

Human -

290, external

21%
A Source: Patty Enriguez, U.C. Berkeley, in progress. Slide 38

Internet Site Failures

Global storage service site failures High-traffic Internet site failures
unknown 0
0% 0%
20%
1% 48%

28%
SW

Human

Network

28%

Network

22% . .
Human error largest cause of failure in the

more complex service, significant in both

Network problems largest cause of failure in
Afhe less complex service, significant in both,

ROC Part 2:
ACME benchmarks

» Traditional benchmarks focus on performance
- ignore ACME goals
- assume perfect hardware, software, human operators

+ 20™h Century Winner:
fastest on SPEC/TPC?

+ 215t Century Winner:
fastest to recover from failure?

* New benchmarks needed to drive progress
toward ACME, evaluate ROC success

- for example, availability and recovery benchmarks

- How else convince developers, customers to adopt new
technology?

&= How else enable researchers to find new challenges?

Availability benchmarking 101

+ Availability benchmarks quantify system
behavior under failures. maintenance. recovery

normal behavior
777777 ~ J(99% conf.)

QoS Metric

failure

1 Repair Time |

0 Time
* They require
- A realistic workload for the system
- Quality of service metrics and tools to measure them
- Fault-injection to simulate failures
- Human operators to perform repairs

e: A. Brown, and D. Patterson,

':Fwar'ds avallablllt benchmarks: a case Slide 41

RECOVERYORM M O CMillpu

Example: 1 fault in SW RAID

220 A — 2
215{JW—| I_L
Lire 0
205
O
S 200 - Reconstructlon J b
c ——————————— — 0
O 195 - A —
(5] [}
3 190 T T T T T T T T T T T §
- 0 10 20 30 40 50 60 70 80 90 100 110 "
o
2. 160 o
" N A — T — L3
T 140]
] —| l<—Reconstruction =3
o — — - —_——— e — — — ——] 1
Solafis | |
100 - — Hits/sec
] _| — — #failures tolerated || 0
80 T T T T T T T T T T T

0O 10 20 30 40 5 60 70 8 90 100 110
Time (minutes)

» Compares Linux and Solaris reconstruction

- Linux: minimal performance impact but longer window of
vulnerability to second fault

5 Solar'ls large perf. lmpac‘r but restores redundancy fast
\a .) Slide 42

Automation vs. Aid?
 Two approaches to helping

1) Automate the entire process as a unit

- the goal of most research into "self-healing”,
“self-maintaining”, "self-tuning”, or more recently
“introspective” or "autonomic” systems

- What about Automation Irony?

2) ROC approach: provide tools to let human
SysAdmins perform job more effectively

- If desired, add automation as a layer on top of the
tools

- What about number of SysAdmins as number of
computers continue to increase?

A theory of human error
(distilled from J. Reason, Human Error, 1990)
* Preliminaries: the three stages of cognitive
processing for tasks
1) planning

» a goal is identified and a sequence of actions is selected to
reach the goal

2) storage

» the selected plan is stored in memory until it is appropriate
to carry it out

3) execution

» the plan is implemented by the process of carrying out the
actions specified by the plan

Slide 44

EEEEEEEEEEEEEEEEEEEEEEEEEE

A theory of human error (2)

» Each cognitive stage has an associated form
of error

- slips: execution stage
» incorrect execution of a planned action
» example: miskeyed command

- lapses: storage stage
» incorrect omission of a stored, planned action

» examples: skipping a step on a checklist, forgetting to
restore normal valve settings after maintenance

- mistakes: planning stage
» the plan is not suitable for achieving the desired goal
» example: TMI operators prematurely disabling HPT pumps

EEEEEEEEEEEEEEEEEEEEEEEEEE

Origins of error: the GEMS model
* GEMS: Generic Error-Modeling System

- an attempt to understand the origins of human error

+ GEMS identifies three /evels of cognitive task
processing

- skill-based: familiar, automatic procedural tasks

» usually low-level, like knowing to type "Is” to list files
- rule-based: tasks approached by pattern-matching
from a set of internal problem-solving rules
» "observed symptoms X mean system is in state Y"
» "if system state is Y, I should probably do Z to fix it"
- knowledge-based: tasks approached by reasoning
from first principles
» when rules and experience don't apply

EEEEEEEEEEEEEEEEEEEEEEEEEE

GEMS and errors

» Errors can occur at each level
- skill-based: slips and lapses
» usually errors of inattention or misplaced attention
- rule-based: mistakes

» usually a result of picking an inappropriate rule

» caused by misconstrued view of state, over-zealous
pattern matching, frequency gambling, deficient rules

- knowledge-based: mistakes

» due to incomplete/inaccurate understanding of system,
confirmation bias, overconfidence, cognitive strain, ...

» Errors can result from operating at wrong level

- humans are reluctant to move from RB to KB level even
if rules aren't working

Error frequencies

» In raw frequencies, SB >> RB > KB
- 61% of errors are at skill-based level
- 27% of errors are at rule-based level
- 11% of errors are at knowledge-based level
- But if we look at opportunities for error, the
order reverses

- humans perform vastly more SB tasks than RB, and
vastly more RB than KB

» so a given KB task is more likely to result in error than a
given RB or SB task

EEEEEEEEEEEEEEEEEEEEEEEEEE

Error detection and correction

* Basic detection mechanism is self-monitoring

- periodic attentional checks, measurement of progress
toward goal, discovery of surprise inconsistencies, ...

- Effectiveness of self-detection of errors
- SB errors: 75-95% detected, avg 86 %

» but some lapse-type errors were resistant to detection

- RB errors: 50-90% detected, avg 73%
- KB errors: 50-80% detected, avg 70%

* Including correction tells a different story:
- SB: ~70% of all errors detected and corrected
- RB: ~50% detected and corrected

= KB: ~25% detected and corrected

What is Undo?

A system-wide ROC recovery mechanism
- designed to reduce MTTR
- "time ftravel” for all system hard state: OS, app., user

A way to tolerate human operator error
- the leading cause of service downtime

A familiar recovery paradigm

- we use it every day in desktop productivity apps
» ROC is extending it o the system level

A way to increase synergy of operator-
machine interaction

- matches human behavioral patterns

Motivation (2)

* Undo "fringe benefits”
- makes sysadmin's job easier, improving maintainability
» better maintainability => better dependability

- enables trial-and-error learning
» builds sysadmin's understanding of system

- helps shift recovery burden from sysadmin to users
» export recovery to users via familiar undo model
» example: NetApp snapshots for file restores

- helps recover from more than just human error
» SW/HW failure, security breaches, virus infections, ...

EEEEEEEEEEEEEEEEEEEEEEEEEE

Towards system models for undo

* Goal: abstract model for undo-capable system
- template for constructing undoable services
- needed to analyze generality and limitations of undo

* Model components
- state entities
- state update events (analogue of transactions)
- event queues and logs
- untracked system changes

 Assumptions
- storage layer that supports bidirectional time-travel
» via non-overwriting FS, snapshots, etc.

.. * Email as example application

Slide 52

EEEEEEEEEEEEEEEEEEEEEEEEEE

Simple model
* Entire system is one state entity

" Email Service State)
User updates

(IMAP) - user state

- mailboxes

- application

- operating system

o
%}o
%

“”Zﬂ%%’;ii\g Time-travel storage j

- Analysis
+ simple, easy to implement, easier to trust, most general
- huge overhead for fine-grained undo operations
- serialization bottleneck at single queue/log
Adifficul’r to distinguish different users' events

Slide 53

Hierarchical model

- System composed of multiple state entities
- each state entity supports undo as in simple model

- state entities join hierarchically to give multiple
granularities of undo

untracked
~N\ \ Ch?]ngees
e B et || L

- —>Im ~— / ~—
= ZU Time-
= ® &= D travel

— virus =] User 2 - store

- filter = \ _

stafe store
_ — e

. Email Service State
- Analysis

+ multiple undo granularities reduces overhead, bottlenecks
+ distributed undo possible
g - greater complexity; tricky to coordinate different layers .. s,

EEEEEEEEEEEEEE

	Rewind, Repair, Replay:Three R’s to cope with operator error
	Outline
	ROC motivation: the past 15 years
	Where we are today
	Recovery-Oriented Computing Philosophy
	ROC approach
	Outline
	Human error
	The ironies of automation
	A science fiction analogy
	Matching recovery & human behavior
	Outline
	“Three R’s” Recovery
	Example 3R’s scenarios
	Context
	Outline
	Challenge #1: state delineation
	Challenge #2: externalized state
	Externalized state: solutions
	Externalized state: solutions (2)
	Challenge #3: granularity
	Challenge #4: history model
	Outline
	Prototype implementation: an undoable email service
	3R’s Email Prototype
	Evaluating the three R’s
	Outline
	Status and future directions
	Conclusions
	For more information
	Backup Slides
	Discussion topics
	A more technical perspective...
	Downtime Costs (per Hour)
	ACME: new goals for the future
	Where does ACME stand today?
	ROC Part I: Failure DataLessons about human operators
	Blocked Calls: PSTN in 2000
	Internet Site Failures
	ROC Part 2: ACME benchmarks
	Availability benchmarking 101
	Example: 1 fault in SW RAID
	Automation vs. Aid?
	A theory of human error(distilled from J. Reason, Human Error, 1990)
	A theory of human error (2)
	Origins of error: the GEMS model
	GEMS and errors
	Error frequencies
	Error detection and correction
	What is Undo?
	Motivation (2)
	Towards system models for undo
	Simple model
	Hierarchical model

