
Rewind, Repair, Replay:
Three R’s to cope with operator error

Aaron Brown
UC Berkeley ROC Group
abrown@cs.berkeley.edu

IBM Almaden, 22 March 2002

Slide 2

Outline
• Recovery-Oriented Computing background

• Motivation: the importance of human operators

• The Three R’s: human-centric recovery

• 3R’s challenges

• Implementing and evaluating the 3R’s

• Status, future directions, conclusions

Slide 3

ROC motivation: the past 15 years
• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Assumptions

– Humans are perfect (they don’t make mistakes during
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free
(Hire better programmers!)

– Hardware MTBF is already very large (~100 years
between failures), and will continue to increase

– Maintenance costs irrelevant vs. Purchase price
(maintenance a function of price, so cheaper helps)

Slide 4

Where we are today
• MAD TV, “Antiques Roadshow, 3005 AD”

VALTREX:
“Ah ha. You paid 7 million Rubex too much. My
suggestion: beam it directly into the disposal cube.
These pieces of crap crashed and froze so frequently
that people became violent!
Hargh!”

“Worthless Piece of Crap: 0 Rubex”

Slide 5

Recovery-Oriented Computing
Philosophy

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres (“Peres’s Law”)
• People/HW/SW failures are facts, not problems
• Recovery/repair is how we cope with them
• Improving recovery/repair improves availability

– UnAvailability = MTTR
MTTF

– 1/10th MTTR just as valuable as 10X MTBF

(assuming MTTR much less than MTTF)

• ROC also helps with maintenance/TCO
– since major Sys Admin job is recovery after failure

• Since TCO is 5-10X HW/SW, sacrifice disk/DRAM/
CPU for recovery if necessary

Slide 6

ROC approach
1. Collect data to see why services fail
2. Create benchmarks to measure recovery

– use failure data as workload for benchmarks
– benchmarks inspire and enable researchers /

humiliate companies to spur improvements
3. Create and Evaluate techniques to help

recovery
– identify best practices of Internet services
– ROC focus on fast repair (they are facts of life)

vs. FT focus longer time between failures (problems)
– make human-machine interactions synergistic vs.

antagonistic

Slide 7

Outline
• Recovery-Oriented Computing background

• Motivation: the importance of human operators

• The Three R’s: human-centric recovery

• 3R’s challenges

• Implementing and evaluating the 3R’s

• Status, future directions, conclusions

Slide 8

Human error
• Human operator error is the leading cause of
dependability problems in many domains

• Operator error cannot be eliminated
– humans inevitably make mistakes: “to err is human”
– automation irony tells us we can’t eliminate the human

59%22%

8%

11%

Operator
Hardware
Software
Overload

51%

15%

34%

0%

Public Switched Telephone Network Average of 3 Internet Sites

Sources of Failure

Source: D. Patterson et al. Recovery Oriented Computing (ROC): Motivation, Definition, Techniques,
and Case Studies, UC Berkeley Technical Report UCB//CSD-02-1175, March 2002.

Slide 9

The ironies of automation
• Automation doesn’t remove human influence
from system
– shifts the burden from operator to designer

» designers are human too, and make mistakes
» if designer isn’t perfect, human operator still needed

• Automation can make operator’s job harder
– reduces operator’s understanding of the system

» automation increases complexity, decreases visibility
» no opportunity to learn without day-to-day interaction

– uninformed operator still has to solve exceptional
scenarios missed by (imperfect) designers

» exceptional situations are already the most error-prone

Source: J. Reason, Human Error, Cambridge University Press, 1990.

Slide 10

A science fiction analogy
• Full automation • Human-aware automation

• Suffers from effects of
the automation ironies

– system is opaque to humans
– only solution to unanticipated

failure is to pull the plug?

• 24th-century engineer is
like today’s SysAdmin

– a human diagnoses & repairs
computer problems

– automation used in human-
operated diagnostic tools

HAL 9000 (2001)
Enterprise computer (2365)

Slide 11

Matching recovery & human behavior
• Need a recovery mechanism that matches the
way humans behave
– tolerate inevitable operator errors

» even with correct intentions, humans still make “slips”
– harness hindsight

» ~70% of human errors are immediately self-detected
» non-human failures are often avoidable in hindsight

• e.g., misconfigurations, break-ins, viruses, etc.
• provide retroactive repair for these failures

– support trial & error
» today’s systems are too complex to understand a priori
» allow exploration, learning from mistakes

Slide 12

Outline
• Recovery-Oriented Computing background

• Motivation: the importance of human operators

• The Three R’s: human-centric recovery

• 3R’s challenges

• Implementing and evaluating the 3R’s

• Status, future directions, conclusions

Slide 13

“Three R’s” Recovery
• Time travel for system operators
• Three R’s for recovery

– Rewind: roll all system state backwards in time
– Repair: change system to prevent failure

» e.g., fix latent error, retry unsuccessful operation, install
preventative patch

– Replay: roll system state forward, replaying end-user
interactions lost during rewind

• All three R’s are critical
– rewind enables undo
– repair lets user/administrator fix problems
– replay preserves updates, propagates fixes forward

Slide 14

Example 3R’s scenarios
• Direct operator errors

– system misconfiguration
» configuration file change, email filter installation, ...

– accidental deletion of data
» “rm –rf /”, deleting a user’s email spool, reversed copy

during data reorganization, ...

• Retroactive repair
– mitigate external attacks

» retroactively install virus/spam filter on email server;
effects are squashed on replay

– repair broken software installations
» mis-installed software patch, installation of software that

corrupts data, software upgrade that slows performance

Slide 15

Context
• Traditional Undo gives only two R’s

– rewind & repair or rewind & replay
– e.g., backup/restore, checkpointing

• RDBMS log-based recovery
– typically implements two R’s: rewind/replay used to

recover from crashes, deadlock, etc.
» but no opportunity for repair during rewind/replay cycle

– DB logging mechanisms could give all 3 R’s
» but not at whole-system level

Slide 16

Outline
• Recovery-Oriented Computing background
• Motivation: the importance of human operators
• The Three R’s: human-centric recovery
• 3R’s challenges

– delineating state preserved by replay
– externalized state
– granularity
– history model

• Implementing and evaluating the 3R’s
• Status, future directions, conclusions

Slide 17

Challenge #1: state delineation
• What state changes does Replay restore?

– ideal: only updates that are important to the end-user
» allows effects of repairs to propagate forward

• Replay should preserve intent of updates
– not physical manifestation in state

» repair might alter the physical representation
– achieved by protocol-level logging/replay of updates

» e.g., SMTP, IMAP, JDBC/SQL, XML/SOAP, ...
» argues for proxy-based undo implementations

• Replay ignores prior repairs lost during rewind
– too difficult to record intent of repairs (for now)

Slide 18

Challenge #2: externalized state
• The equivalent of the “time travel paradox”

– the 3R cycle alters state that has previously been
seen by an external entity (user or another computer)

– produces inconsistencies between internal and
external views of state after 3R cycle

• Examples
– a formerly-read/forwarded email message is altered
– a failed request is now successful or vice versa
– item availability estimates change in e-commerce,

affecting orders
• No complete fix; solutions just manage the
inconsistency

Slide 19

Externalized state: solutions
• Ignore the inconsistency

– let the (human) user tolerate it
– appropriate where app. already has loose consistency

» e.g., email message ordering, e-commerce stock estimates

• Compensating/explanatory actions
– leave the inconsistency, but explain it to the user
– appropriate where inconsistency causes confusion but

not damage
» e.g., 3R’s delete an externalized email message;

compensating action replaces message with a new message
explaining why the original is gone

» e.g., 3R’s cause an e-commerce order to be cancelled;
compensating action refunds credit card and emails user

Slide 20

Externalized state: solutions (2)
• Expand the boundary of Rewind

– 3R cycle induces rollback of external system as well
» external system reprocesses updated externalized data

– appropriate when externalized state chain is short;
external system is under same administrative domain

» danger of expensive cascading rollbacks; exploitation

• Delay execution of externalizing actions
– allow inconsistency-free undo only within delay window
– appropriate for asynchronous, non-time-critical

events
» e.g., sending mailer-daemon responses in email or

delivering email to external hosts

Slide 21

Challenge #3: granularity
• Making 3R’s available at multiple granularities

– user, system, cluster, service
• Why multiple granularities?

– efficiency and scalability
» limit rollbacks to minimal affected state

– allow users to repair their own problems, reducing
operator’s burden

• Difficulties
– coordination of rewind/replay with concurrent undos

at different granularities
– respecting dependencies between shared and per-user

state

Slide 22

Challenge #4: history model
• How should the 3R-altered timeline be
presented to the operator?
– single rewind/replay?
– linearized history?
– full branching history

with all time points available?
– without replaying repairs, best option is multiple-

rewind, single-replay
• What do users see during 3R cycle?

– read-only snapshot of unwound state?
» easy to implement

– synthesized view of up-to-date state?
» easier for users to understand

54

3

2
10 u

u

Slide 23

Outline
• Recovery-Oriented Computing background

• Motivation: the importance of human operators

• The Three R’s: human-centric recovery

• 3R’s challenges

• Implementing and evaluating the 3R’s

• Status, future directions, conclusions

Slide 24

Prototype implementation:
an undoable email service

• Why email?
– essential “nervous system” for enterprises, individuals
– most popular Internet service
– good balance of hard state and relaxed consistency
– many opportunities for human error, retroactive repair

• Prototype goals
– demonstrate feasibility and measure overhead
– explore 3R challenges, especially externalized state
– use as testbed for developing recovery benchmarks

Slide 25

3R’s Email Prototype

Email Server
Includes:

- user state
- mailboxes
- application
- operating system

Non-overwriting
Storage

Undo
Log

3R
Proxy

State
Tracker

SMTP

IMAP

SM
TP

IMAP

control

3R Layer

• Prototype architecture
– proxy implementation wrapping existing mail server
– non-overwriting storage for rewind
– SMTP and IMAP logging for replay

Slide 26

Evaluating the three R’s

Time

Q
oS

 M
et

ric

0
recovery time

dependability impact
perturbation

normal behavior
(99% conf.)

• Traditional performance benchmarks don’t help
• We’re developing recovery benchmarks

• Human operators participate in benchmarks
– diagnose problems, perform repairs, carry out

maintenance tasks
– mistakes act as an additional perturbation source
– we measure dependability impact, human error rate,

required human interaction time

Slide 27

Outline
• Recovery-Oriented Computing background

• Motivation: the importance of human operators

• The Three R’s: human-centric recovery

• 3R’s challenges

• Implementing and evaluating the 3R’s

• Status, future directions, conclusions

Slide 28

Status and future directions
• Status

– currently implementing prototype in email service
– evaluating solutions to externalized state problem for

email
– starting feasibility studies for recovery benchmarks

• Future directions
– generalize 3R model

» examine other applications
» extend to lower levels of system: storage, HW
» develop model of state organization for 3R-capable

systems
– investigate granularities and richer history models

Slide 29

Conclusions
• Peres’s law suggests new focus on recovery
• The three R’s provide a recovery mechanism for
today’s dependability problems
– human operator error
– unanticipated failure compounded by operator reaction
– maybe even external attack

• 3R’s are synergistic with operator behavior
– assume mistakes
– quick recovery even without diagnosis
– allow trial & error exploration, retroactive repair

• Many challenges remain in model, implementation

Slide 30

For more information
• Web: http://roc.cs.berkeley.edu/

– ROC overview, talks, papers
– Drafts of workshop papers on the 3R’s, recovery

benchmarks, real-world failure data analysis

• Email: abrown@cs.berkeley.edu

Slide 31

Backup Slides

Slide 32

Discussion topics
• Externalized state—do solutions generalize?

• Comparison with existing recovery systems

• Evaluation: tasks for benchmarks?

• Prototype: what non-overwriting storage layer?

Slide 33

A more technical perspective...
• Services as model for future of IT
• Availability is now vital metric for services

– near-100% availability is becoming mandatory
» for e-commerce, enterprise apps, online services, ISPs

– but, service outages are frequent
» 65% of IT managers report that their websites were

unavailable to customers over a 6-month period
• 25%: 3 or more outages

– outage costs are high
» downtime costs of $14K - $6.5M per hour
» social effects: negative press, loss of customers who

“click over” to competitor

Source: InternetWeek 4/3/2000

Slide 34

Downtime Costs (per Hour)
• Brokerage operations $6,450,000
• Credit card authorization $2,600,000
• Ebay (1 outage 22 hours) $225,000
• Amazon.com $180,000
• Package shipping services $150,000
• Home shopping channel $113,000
• Catalog sales center $90,000
• Airline reservation center $89,000
• Cellular service activation $41,000
• On-line network fees $25,000
• ATM service fees $14,000

Sources: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel 2000, p.8.
“...based on a survey done by Contingency Planning Research.”

Slide 35

ACME: new goals for the future
• Availability

– 24x7 delivery of service to users
• Changability

– support rapid deployment of new software, apps, UI
• Maintainability

– reduce burden on system administrators
– provide helpful, forgiving SysAdmin environments

• Evolutionary Growth
– allow easy system expansion over time without

sacrificing availability or maintainability

Slide 36

Where does ACME stand today?
• Availability: failures are common

– Traditional fault-tolerance doesn’t solve the problems
• Changability

– In back-end system tiers, software upgrades
difficult, failure-prone, or ignored

– For application service over WWW, daily change
• Maintainability

– system maintenance environments are unforgiving
– human operator error is single largest failure source

• Evolutionary growth
– 1U-PC cluster front-ends scale, evolve well
– back-end scalability difficult, operator intensive

Slide 37

ROC Part I: Failure Data
Lessons about human operators
• Human error is largest single failure source

– HP HA labs: human error is #1 cause of failures (2001)
– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

53%

18%

18%
10%

Slide 38

38%

21%

22%

8%

11%

Blocked Calls: PSTN in 2000

Human error
accounts for
59%59% of all
blocked calls

HW

SW

Over-
load Human –

company

Human –
external

Source: Patty Enriquez, U.C. Berkeley, in progress.

Slide 39

Internet Site Failures

Human error largest cause of failure in the
more complex service, significant in both

Network problems largest cause of failure in
the less complex service, significant in both

Global storage service site failures
hardware

0%

28%

Network

22%

Human

41%

unknown
9%

28%

software
0%

48%
20%

4%

HW
Network

Human
SW

High-traffic Internet site failures

Slide 40

ROC Part 2:
ACME benchmarks

• Traditional benchmarks focus on performance
– ignore ACME goals
– assume perfect hardware, software, human operators

• 20th Century Winner:
fastest on SPEC/TPC?

• 21st Century Winner:
fastest to recover from failure?

• New benchmarks needed to drive progress
toward ACME, evaluate ROC success
– for example, availability and recovery benchmarks
– How else convince developers, customers to adopt new

technology?
– How else enable researchers to find new challenges?

Slide 41

Availability benchmarking 101
• Availability benchmarks quantify system
behavior under failures, maintenance, recovery

• They require
– A realistic workload for the system
– Quality of service metrics and tools to measure them
– Fault-injection to simulate failures
– Human operators to perform repairs

Time

Q
oS

 M
et

ric

0
Repair Time

QoS degradationfailure

normal behavior
(99% conf.)

Source: A. Brown, and D. Patterson, “Towards availability benchmarks: a case
study of software RAID systems,” Proc. USENIX, 18-23 June 2000

Slide 42

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example: 1 fault in SW RAID

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of

vulnerability to second fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: does not auto-reconstruct!

Linux

Solaris

Slide 43

Automation vs. Aid?
• Two approaches to helping
1) Automate the entire process as a unit

– the goal of most research into “self-healing”,
“self-maintaining”, “self-tuning”, or more recently
“introspective” or “autonomic” systems

– What about Automation Irony?

2) ROC approach: provide tools to let human
SysAdmins perform job more effectively
– If desired, add automation as a layer on top of the

tools
– What about number of SysAdmins as number of

computers continue to increase?

Slide 44

A theory of human error
(distilled from J. Reason, Human Error, 1990)

• Preliminaries: the three stages of cognitive
processing for tasks
1) planning

» a goal is identified and a sequence of actions is selected to
reach the goal

2) storage
» the selected plan is stored in memory until it is appropriate

to carry it out
3) execution

» the plan is implemented by the process of carrying out the
actions specified by the plan

Slide 45

A theory of human error (2)
• Each cognitive stage has an associated form
of error
– slips: execution stage

» incorrect execution of a planned action
» example: miskeyed command

– lapses: storage stage
» incorrect omission of a stored, planned action
» examples: skipping a step on a checklist, forgetting to

restore normal valve settings after maintenance
– mistakes: planning stage

» the plan is not suitable for achieving the desired goal
» example: TMI operators prematurely disabling HPI pumps

Slide 46

Origins of error: the GEMS model
• GEMS: Generic Error-Modeling System

– an attempt to understand the origins of human error
• GEMS identifies three levels of cognitive task
processing
– skill-based: familiar, automatic procedural tasks

» usually low-level, like knowing to type “ls” to list files
– rule-based: tasks approached by pattern-matching

from a set of internal problem-solving rules
» “observed symptoms X mean system is in state Y”
» “if system state is Y, I should probably do Z to fix it”

– knowledge-based: tasks approached by reasoning
from first principles

» when rules and experience don’t apply

Slide 47

GEMS and errors
• Errors can occur at each level

– skill-based: slips and lapses
» usually errors of inattention or misplaced attention

– rule-based: mistakes
» usually a result of picking an inappropriate rule
» caused by misconstrued view of state, over-zealous

pattern matching, frequency gambling, deficient rules
– knowledge-based: mistakes

» due to incomplete/inaccurate understanding of system,
confirmation bias, overconfidence, cognitive strain, ...

• Errors can result from operating at wrong level
– humans are reluctant to move from RB to KB level even

if rules aren’t working

Slide 48

Error frequencies
• In raw frequencies, SB >> RB > KB

– 61% of errors are at skill-based level
– 27% of errors are at rule-based level
– 11% of errors are at knowledge-based level

• But if we look at opportunities for error, the
order reverses
– humans perform vastly more SB tasks than RB, and

vastly more RB than KB
» so a given KB task is more likely to result in error than a

given RB or SB task

Slide 49

Error detection and correction
• Basic detection mechanism is self-monitoring

– periodic attentional checks, measurement of progress
toward goal, discovery of surprise inconsistencies, ...

• Effectiveness of self-detection of errors
– SB errors: 75-95% detected, avg 86%

» but some lapse-type errors were resistant to detection
– RB errors: 50-90% detected, avg 73%
– KB errors: 50-80% detected, avg 70%

• Including correction tells a different story:
– SB: ~70% of all errors detected and corrected
– RB: ~50% detected and corrected
– KB: ~25% detected and corrected

Slide 50

What is Undo?
• A system-wide ROC recovery mechanism

– designed to reduce MTTR
– “time travel” for all system hard state: OS, app., user

• A way to tolerate human operator error
– the leading cause of service downtime

• A familiar recovery paradigm
– we use it every day in desktop productivity apps

» ROC is extending it to the system level

• A way to increase synergy of operator-
machine interaction
– matches human behavioral patterns

Slide 51

Motivation (2)
• Undo “fringe benefits”

– makes sysadmin’s job easier, improving maintainability
» better maintainability => better dependability

– enables trial-and-error learning
» builds sysadmin’s understanding of system

– helps shift recovery burden from sysadmin to users
» export recovery to users via familiar undo model
» example: NetApp snapshots for file restores

– helps recover from more than just human error
» SW/HW failure, security breaches, virus infections, ...

Slide 52

Towards system models for undo
• Goal: abstract model for undo-capable system

– template for constructing undoable services
– needed to analyze generality and limitations of undo

• Model components
– state entities
– state update events (analogue of transactions)
– event queues and logs
– untracked system changes

• Assumptions
– storage layer that supports bidirectional time-travel

» via non-overwriting FS, snapshots, etc.
• Email as example application

Slide 53

Simple model
• Entire system is one state entity

– Analysis
+ simple, easy to implement, easier to trust, most general
– huge overhead for fine-grained undo operations
– serialization bottleneck at single queue/log
– difficult to distinguish different users’ events

Email Service State
- user state
- mailboxes
- application
- operating system

Time-travel storage

synch.

untracked
changes

User updates
(IMAP)

Email delivery
(SMTP)

Slide 54

Hierarchical model
• System composed of multiple state entities

– each state entity supports undo as in simple model
– state entities join hierarchically to give multiple

granularities of undo

– Analysis
+ multiple undo granularities reduces overhead, bottlenecks
+ distributed undo possible
– greater complexity; tricky to coordinate different layers

User 1
state TT

store

User 2
state TT

store

Email delivery
(SMTP)

User updates
(IMAP)

untracked
changes

Time-
travel
store

u
s
e
r

m
u
x

virus
filter

Email Service State

	Rewind, Repair, Replay:Three R’s to cope with operator error
	Outline
	ROC motivation: the past 15 years
	Where we are today
	Recovery-Oriented Computing Philosophy
	ROC approach
	Outline
	Human error
	The ironies of automation
	A science fiction analogy
	Matching recovery & human behavior
	Outline
	“Three R’s” Recovery
	Example 3R’s scenarios
	Context
	Outline
	Challenge #1: state delineation
	Challenge #2: externalized state
	Externalized state: solutions
	Externalized state: solutions (2)
	Challenge #3: granularity
	Challenge #4: history model
	Outline
	Prototype implementation: an undoable email service
	3R’s Email Prototype
	Evaluating the three R’s
	Outline
	Status and future directions
	Conclusions
	For more information
	Backup Slides
	Discussion topics
	A more technical perspective...
	Downtime Costs (per Hour)
	ACME: new goals for the future
	Where does ACME stand today?
	ROC Part I: Failure DataLessons about human operators
	Blocked Calls: PSTN in 2000
	Internet Site Failures
	ROC Part 2: ACME benchmarks
	Availability benchmarking 101
	Example: 1 fault in SW RAID
	Automation vs. Aid?
	A theory of human error(distilled from J. Reason, Human Error, 1990)
	A theory of human error (2)
	Origins of error: the GEMS model
	GEMS and errors
	Error frequencies
	Error detection and correction
	What is Undo?
	Motivation (2)
	Towards system models for undo
	Simple model
	Hierarchical model

