
Slide 1

Embracing Failure: Availability via
Recovery-Oriented Computing (ROC)

Aaron Brown
ROC Research Group

Computer Science Division, UC Berkeley
abrown@cs.berkeley.edu

Slide 2

Outline
• Motivation for ROC

• Principles of ROC design

• Initial ROC implementation target

• Evaluating ROC: availability benchmarks

• Summary

Slide 3

Motivation for a new philosophy
• Internet service availability is a big concern

– outages are frequent
» 65% of IT managers report that their websites were

unavailable to customers over a 6-month period
• 25%: 3 or more outages

– outages costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $ 225,000/hr
» Amazon.com: $ 180,000/hr
» social effects: negative press, loss of customers who “click

over” to competitor
– but, despite marketing, progress seems slow. . .

• Why?

Source: InternetWeek 4/3/2000

Slide 4

Traditional HA vs. Internet reality
• Traditional HA env’t

– stable
» functionality
» software
» workload and scale

– high-quality infrastructure
designed for high availability

» robust hardware: fail-fast,
duplication, error checking

» custom, well-tested,
single-app software

» single-vendor systems

– certified maintenance
» phone-home reporting
» trained vendor technicians

• Internet service env’t
– dynamic and evolving

» weekly functionality changes
» rapid software development
» unpredictable workload and

fast growth
– commodity infrastructure

coerced into high availability
» cheap hardware lacking

extensive error-checking
» poorly-tested software

cobbled together from off-
the-shelf and custom code

» multi-vendor systems
– ad-hoc maintenance

» by local or co-lo. techs

Slide 5

Facts of life
• Realities of Internet service environment:

– hardware and software failures are inevitable
» hardware reliability still imperfect
» software reliability thwarted by rapid evolution
» Internet system scale exposes second-order failure modes

– unanticipated failures are inevitable
» commodity components do not fail cleanly
» black-box system design thwarts models
» seemingly-obscure failure modes are normal

– human operators are imperfect
» human error accounts for ~50% of all system failures
» human error probability is 10%-100% under stress

• Traditional HA doesn’t address these realities!

Sources: Gray86, Hamilton99, Kuhn97, Menn99, Murphy95, Perrow99, Pope86

Slide 6

Recovery-Oriented Computing (ROC)
“If a problem has no solution, it may not be a problem,

but a fact, not to be solved, but to be coped with over time”
— Shimon Peres

• Failures are a fact, and recovery/repair is
how we cope with them

• Hypothesis: improving recovery will improve
availability
– availability = MTTF

(MTTF + MTTR)

Slide 7

ROC systems
• A recovery-oriented system

– uses recovery and repair to tolerate failures of
hardware, software, and humans

– provides rapid recovery
» efficiently detects and diagnoses failures

– provides effective recovery
» proactively verifies efficacy and speed of repair procedures

– provides robust recovery
» tolerates errors during repair and maintenance

Slide 8

Context: ROC design
• Vs. traditional fault-tolerance approaches

– different philosophy
» traditional: focus on HW; assume good software, operators

• build good SW by controlling development, modeling
» repair-centric: assume that any HW, SW, operator can fail

• assume environment too dynamic to control or model
– some shared techniques

» testing, checkpoints, fault-injection, diagnosis
» but applied differently: online, system-wide, without models

• Other existing recovery-oriented approaches
– restartable systems

» Recursive Restartability, soft-state worker frameworks
– application-level checkpoint recovery

Sources: Candea01, Fox97, Lowell98, Lowell00, Ninja01

Slide 9

Outline
• Motivation for ROC

• Principles of ROC design

• Initial ROC implementation target

• Evaluating ROC: availability benchmarks

• Summary

Slide 10

Approaching ROC design
• Tentative principles of ROC design

1) isolation and redundancy: fault containment
» prevent failure propagation and enable proactive testing

2) online verification: fully-integrated online testing
» detect failures quickly to expedite repair
» provide trust in repair mechanisms and human operators

3) undo: the ultimate repair mechanism?
» tolerate human error and repair unanticipated failures

4) diagnosis: dependency and fault tracking
» assist operator in pinpointing failures to expedite repair

Slide 11

(1) Isolation and redundancy
• System is redundant

– sufficient HW redundancy/data replication => part of
system down but satisfactory service still available

– enough to survive 2nd failure or more during recovery
• System is partitionable

– to isolate faults
– to enable online repair/recovery
– to enable online HW growth/SW upgrade
– to enable operator training/expand experience on

portions of real system

Slide 12

Approaches to isolation
• Shared-nothing cluster design

– no shared storage between nodes
– total physical partitioning of nodes possible via

network disconnection
– system versions can coexist: easy expansion, upgrades

• HW support to limit scope of faults
– separate address spaces whenever possible
– queue-based communication between processes
– read/write protection of memory pages
– physical (electrical) network partitioning

• Geographic replication for last-resort isolation

Slide 13

(2) Online verification
• System enables input insertion, output check
of all modules (including fault insertion)
– to check module operation to find failures faster

» correctness and performance
– to test correctness of recovery mechanisms

» insert faults and known-incorrect inputs
» also enables availability benchmarks

– to discover if warning systems are broken
– to expose and remove latent errors from each system
– to train/expand experience of operator

Slide 14

More online verification
• Modules (HW and SW) perform redundant
calculation to help discover errors
– program checking analogy: if computation is O(nx),

(x > 1) and if check is O(n), little cost to check
– extension of assertion checking, checksums, ECC-like

approaches to all software and hardware
• System proactively discovers its configuration

– including interconnect and power supply topology, etc.
– verifies available redundancy, thwarts human mistakes

• System continuously verifies global invariants
– use “conservation law analysis” as in industrial plants

to prevent loss, misdirection of data

Slide 15

Online verification of operators
• To expand operator experience beyond normal
events, regular fault insertion on live system
– provide training for new operators
– familiarize operators with failure modes, repair tasks

» reduce human error potential
– test operator performance during repair

» results reflected back to management to discover in advance
if there is a people problem

– use partitioning and isolation mechanisms to protect
production data during testing/training

Slide 16

(3) Undo
• ROC system should offer Undo

– to recover from operator errors
» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– to recover from inevitable SW errors
» restore entire system state to pre-error version

– to recover from operator training via fault-insertion
– to replace traditional backup and restore?

• Implement using checkpoint and logging
technology
– restrict semantics and granularity for simpler

implementation, lower overhead

Slide 17

(4) Diagnosis
• System assists human in diagnosing problems

– root-cause analysis to suggest possible failure points
» track resource dependencies of all requests
» correlate symptomatic requests with component dependency

model to isolate culprit components
– “health” reporting to detect failed/failing components

» failure information, self-test results propagated upwards
– unified status console to highlight improper behavior,

predict failure, and suggest corrective action
• Log faults, errors, failures and recovery

– to create a library of failures
» for future diagnoses, training, fault-injection, and research

Slide 18

Outline
• Motivation for ROC

• Principles of ROC design

• Initial ROC implementation target

• Evaluating ROC: availability benchmarks

• Summary

Slide 19

First ROC implementation target
• Hardware: ROC-I cluster

– 64-node PC cluster with integrated storage
– special features for ROC-based high availability

» support for hardware fault-injection
» support for partitioning at the electrical level
» support for topology discovery of network and power
» highly instrumented hardware enables online HW verification
» integrated diagnostic system: per-node diagnostic

processors and independent diagnostic network
– modular, cable-less “brick” design enables easy

maintenance, reduces human-induced HW failures

Slide 20

ROC-I Brick Node
• Pentium-II/266
• 256 MB DRAM
• 18 GB SCSI (or IDE) disk
• 4x100Mb Ethernet
• m68k diagnostic processor & CAN diagnostic network
• Packaged in standard half-height RAID array canister

Slide 21

ROC-I system
• 64-node cluster of nodes, 1.1TB storage

– cluster nodes are plug-and-play, intelligent, network-
attached storage “bricks”

» a single field-replaceable unit to simplify maintenance
– more CPU per disk than NAS or cluster architectures

ROC-I Chassis
64 nodes, 8 per tray
2 levels of switches
•20 100 Mb/s
•2 1 Gb/s
Environment Monitoring:
UPS, redundant PS,
fans, heat and vibration
sensors...

Storage-Oriented Node “Brick”
Portable PC CPU: Pentium II/266 + DRAM

Redundant NICs (4 100 Mb/s links)
Diagnostic Processor

Disk

Half-height canister

Slide 22

First ROC implementation target
• Software application: Internet email service

– simple, but enough complexity to be interesting
» hard state, rich data, relaxed consistency requirements

Simple ComplexEmail

web
server

xform.
proxy

block
server

search
engine

file
server

e-commerce
app. server

SQL
DBMS

– techniques for email should generalize
» but stronger consistency may add complexity

– proposed base email implementation: NinjaMail
» research implementation from UCB Ninja group
» provides needed infrastructure for investigating ROC

Slide 23

Outline
• Motivation for ROC

• Principles of ROC design

• Initial ROC implementation target

• Evaluating ROC: availability benchmarks

• Summary

Slide 24

Evaluating ROC systems
• Traditional benchmarks focus on performance

– ignore availability
– assume perfect hardware, software, human operators

• Evaluating ROC requires evaluating availability
gains from repair-oriented design techniques
– requires availability benchmarking

» a technique we developed in earlier work

Slide 25

Availability benchmarking 101
• Availability benchmarks quantify system
behavior under failures and maintenance

• They require
– a realistic workload for the system
– quality of service metrics and tools to measure them
– fault-injection to simulate failures
– human operators to perform repairs

Time

Q
oS

 M
et

ric

0
Repair Time

QoS degradationfailure

normal behavior
(99% conf.)

Slide 26

Example: email application
• Workload

– SPECmail2001 industry-standard email benchmark

• Quality of service metrics
– performance (SPECmail messages per minute)
– error rate (lost or corrupted messages and mailboxes)
– consistency (fraction of inconsistent mailboxes)
– human maintenance time and error rate

Slide 27

Fault injection
• Fault workload

– must accurately reflect failure modes of real-world
Internet service environments

» plus random tests to increase coverage, simulate Heisenbugs
– but, no existing public failure dataset

» we have to collect this data
» a challenge due to proprietary nature of data
» interest expressed by Microsoft, IBM, and Hotmail

– major contribution will be to collect, anonymize, and
publish a modern set of failure data

• Fault injection harness
– build into system: needed anyway for online

verification

Slide 28

Evaluating ROC: human aspects
• Must include humans in availability benchmarks

– to verify effectiveness of undo, training, diagnostics
– humans act as system administrators

• Subjects should be admin-savvy
– system administrators
– CS graduate students

• Challenge will be compressing timescale
– i.e., for evaluating training

• We have some experience with these trials
– earlier work in maintainability benchmarks used 5-

person pilot study

Slide 29

Summary
• ROC: Recovery-Oriented Computing

– a new approach to increasing availability by focusing
on recovery and repair

– based on realities of today’s Internet service env’t
– tackles the universally-ignored problem of human error

• A departure from traditional HA philosophy
– embracing failure, not attempting perfection
– model of proactive testing/verification, on live systems

• ROC offers the potential for unprecedented
advances in availability

Slide 30

Acknowledgements
• Dave Patterson
• Thesis committee

– Dave Patterson, Armando Fox, James Hamilton, Kathy
Yelick, John Chuang

• UC Berkeley ISTORE group
– Eric Anderson, Jim Beck, Dan Hettena, Jon Kuroda,

David Martin, David Oppenheimer, Noah Treuhaft
• Industry supporters

– Bill Tetzlaff, Brendan Murphy, Gautam Kar
• Questions or comments?

– email: abrown@cs.berkeley.edu
– www: http://istore.cs.berkeley.edu/

Slide 31

End

Slide 32

Contributions
• New philosophy for high-availability design

• Definition of repair-centric design techniques
– addressing hardware, software, and human failures

• Prototype repair-centric system implementation

• Quantitative, human-aware availability
evaluation methodology
– including collection and characterization of data on

real-world system failure modes and maintenance tasks

Slide 33

Human error rate experiments
• Human error rates during simple RAID repair

– 5 trained subjects repeatedly repairing disk failures
– aggregate error rate across subjects plotted over time

Iteration
1 2 3 4 5 6 7 8 9

N
um

be
r o

f e
rr

or
s

0

1

2

3

Windows
Solaris
Linux

Slide 34

What causes un-availability?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

• Many different factors are involved
– human behavior during maintenance dominates

Source: Murphy95

Slide 35

How does ROC differ from
Fault Tolerant Computing?

• Systems like Tandem, IBM mainframes
concentrate on Hardware Failures
– Mirrored disks, Redundant cross-checked CPUs, …
– Designed to handle 1 failure until repaired

• Also some work on Software failures:
Tandem’s process pairs, transactions, …
– Rather than embracing failure, goal is SW perfection

• No attention to human failures
• FTC works on improving reliability vs.
recovery/repair

• Generally ROC is synergistic with FTC

Slide 36

Traditional HA vs. repair-centric
• Traditional HA system

– hardware-centric focus
– assumes robust software

» by controlling entire stack
– assumes robust operator

» by controlling maintenance
– may not tolerate errors

during repair/maintenance

• Repair-centric system
– tolerates hardware,

software, human errors
– assumes black-box software

stack
– tolerates operator error
– tolerates errors during

maintenance/repair

Slide 37

Assumptions
• Cluster-like environment

– replicated data and services
– partitionable hardware

• Single-application system
• Modular HW/SW design
• Availability trumps performance

– willing to sacrifice performance to increase availability
• Extra resources are available

– willing to overprovision resources to improve
availability

» especially inexpensive disks and disk bandwidth

Slide 38

Undo
• Undo definition

– undo restores modified system state to a previous
snapshot while preserving externally-initiated updates

» i.e., for email, it restores state while preserving mail delivery
and user mailbox modifications

• Undo is the most fundamental repair-centric
design mechanism
– provides a way to tolerate human errors

» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– allows recovery from inevitable HW/SW errors
» restore entire system state to pre-error version

– subsumes traditional backup and restore

Slide 39

Undo examples
• Tolerating human maintenance errors

– operator disconnects wrong component during repair
» undo: replace component, system continues normally

– operator installs software upgrade that corrupts data
or performs poorly (E*Trade, EBay)

» undo: roll-back upgrade, restore uncorrupted data, replay
interim requests

– operator overwrites data store or critical config file
» undo: restore data store, config state; replay lost requests

• Tolerating failures
– hardware or software failure corrupts data

» undo: restore snapshot and replay interim requests
– system destabilizes when new hardware is added

» undo: revert system configuration state to disable hardware

Slide 40

Undo context
• Similar to existing checkpoint techniques...

– file system snapshots (e.g., NetApp)
– DBMS log-based recovery
– application checkpointing for failure recovery

• ...but with some new twists
– use for tolerating human mistakes
– use at system level as well as application level

» mandatory for tolerating errors during repair/maintenance
– preservation of externally-initiated updates

» logging/replay at external interfaces and full state
restoration avoid inherent save-work/lose-work conflict

Sources: Hitz95, Lowell98, Lowell00, Mohan92

Slide 41

Undo implementation
• As a repair mechanism, undo must be simple

– no complex fine-grained distributed checkpoints, etc.
• Two types of simple undo

1) allow replacement of incorrectly-removed components
» enforce queuing in front of all removable resources
» spill queues to disk to allow reasonable replacement window
» Ninja’s queue-based communication model should match well

2) coarse-grained maintenance-undo of system state
» provide cluster-wide hard state rollback mechanism with

preservation of external updates (like mail delivery)
» leverage properties of email service to simplify

implementation

Slide 42

Undo implementation (2)
• Coarse-grained maintenance undo

– use standard snapshot and logging techniques
– restrict semantics to simplify implementation

» coarse-grained in space: undo affects entire cluster partition
» coarse-grained in time: undo rolls back to a previous snapshot
» undo restores only system hard-state

• software, config. files, mail store contents
• updates preserved by logging and replaying at external

interfaces
• enabled by Ninja design of stateless workers

– these semantics are sufficient
» coarse granularity is appropriate for a repair mechanism
» email can tolerate inconsistencies during undo/rollback

Slide 43

Undo issues
• Open issues in implementing undo

– defining undo points
» simplest: a special “undo mode” for tolerating human error
» but periodic snapshots are needed for repairing

unanticipated failures
– snapshot and logging mechanisms

» overhead affects granularity of undo points
» with cheap disks and disk bandwidth, are simple but high-

overhead schemes acceptable?
– protecting undo from failures

» snapshots, external request logs must be independent
» undo should be tested like any repair mechanism: stage 3

Slide 44

Stage 2: Online verification
• Goal: expedite repair

– expose latent problems for repair
– reduce failure propagation with faster detection

• Techniques
– continuously verify HW & SW component operation

» check correctness to detect bugs and hard failures
» check performance to detect bottlenecks and soft failures
» use real test inputs, not heartbeats

– add verification at all component interfaces
» check received data against specifications, checksums

– check global system properties
» use “conservation law analysis” as in industrial plants [Lind81]

to prevent loss, misdirection of data

Slide 45

Issues in online verification
• Standard testing issues

– input selection, result verification, coverage analysis
• Online testing challenges

– ensuring non-destructive operation
» perform testing on an isolated partition of the cluster
» use hardware isolation and existing Ninja partitioning and

node-reincorporation mechanisms
– detecting dynamic performance problems

» check all tests against running statistical estimates of range
of normal performance

• Developing global conservation laws for email
– example: rate of incoming messages must equal sum of

rates of additions to user mailboxes

Slide 46

Stage 3: Exercising repair
• Repair mechanisms are often untrustworthy

– buggy automatic recovery code
– humans unfamiliar with system repair procedures

• Goal: proactively verify repair mechanisms by
exercising them in realistic environment
– detect broken recovery code so it isn’t relied on
– provide framework for testing recovery code
– familiarize operators with failure modes and repair

procedures, and test them
• Basic technique: fault-injection

– performed in online, production system!

Slide 47

Exercising repair: approach
• Inject realistic faults to simulate failures

– targeted faults simulate most likely failure modes
– random faults capture tail of the failure distribution

• Allow automatic recovery attempt
– if recovery fails or is not available, log fault and use in

human exercises
» approach is self-tuning for level of automatic recovery

• Perform human training/testing
– using fault set that failed automatic recovery

• Do testing on isolated subset of system
– to avoid damage to production system

Slide 48

Issues in exercising repair
• Fault injection

– need realistic fault set and injection harness
– also needed for evaluation -> discussed later

• Verification
– straightforward for targeted faults

» effects are known
– a challenge for random faults

» use stage 2 testing and verification infrastructure

• Protection
– use partition-isolation mechanisms from stage 2

Slide 49

Stage 4: Diagnosis aids
• Goal: assist human diagnosis, not subsume it

– reduce space of possible root causes of failure
– provide detailed “health status” of all components

• Technique #1: dependency analysis
– model dependencies of requests on system resources

» use model to identify potential resource failures when a
request fails

» correlate dependencies across symptomatic requests to
reduce failure set

– generate model dynamically
» stamp requests with ID of each resource/queue they touch

– issues
» tracking dependencies across decoupling points
» accounting for failures in background non-request processing

Slide 50

Diagnosis aids
• Technique #2: propagating fault information

– explicitly propagate component failure and recovery
information upward

» provide “health status” of all components
» can attempt to mask symptoms, but still inform upper layers
» rely on online verification infrastructure for detection

– issues
» devising a general representation for health information
» using health information to let application participate in

repair

Slide 51

Details: application spectrum

3

4

5

7

8

9

12

15

Total

01011Web server

13000Transforming
proxy

00023Block server

23011Search
engine

11123File server

22113Email

33330E-commerce
app. server

33333SQL
database

Query
complexity

Internal
knowledge of

data semantics
Interface
complexity

Consistency
requirement

Hard
state

Application

Slide 52

Context: undo
• Undo is common for application recovery

– database transaction rollback
– checkpoint/restore of long-running scientific codes
– app. checkpointing may help tolerate Heisenbugs

• But is rare at the system level
– only common example is snapshotting file systems

» Network Appliance, new BSD FFS, Elephant, etc.
– system-level undo needed to handle maintenance

errors
• Implementing undo requires implementing
standard recovery techniques at system level
– checkpointing, logging, snapshots, . . .

Sources: Hitz95, Lowell98, Lowell00, Mohan92

Slide 53

Context: exercising repair
• Similar to traditional “fire-drill” testing

– but automated, so it really gets done
– unique to perform testing in context of live system

using fault-injection
• Training aspect is similar to offline training

– Tandem’s “uptime champion” uses pilot-system-trained
operators to increase availability

– aircraft industry has long-standing tradition of
simulator-based training to reduce human error

– our approach provides same, but on live system
• Built-in fault injection similar to mainframes

– IBM 3090, ES/9000 used built-in fault injection, but
only during test-floor burn-in

Sources: Bartlett01, Merenda92, Nawrocki81

Slide 54

Context: online verification
• Most existing approaches are in hardware

– lockstep hardware in mainframe and FT systems
– ECC and other hardware verification schemes
– hardware Built-In-Self-Test (BIST), online & offline

• Online software techniques are usually ad-hoc
– assertion checking
– heartbeats
– checksums

• We systematically extend hardware
techniques to software and system level

Sources: Gray86, Spainhower92, Spainhower98, Steininger99

Slide 55

Context: diagnosis
• One-off system-specific diagnosis aids

– NetApp network diagnoser: cross-layer correlation
and expert-system approaches

• General diagnostic methods
– expert systems and fault-tree approaches

» all require good understanding/model of failure modes, and
thus conflict with real-world observations

– dependency-based root-cause analysis
» requires system model, but only at level of resource

dependencies
» our request-tracing approach dynamically discovers resource

dependency model

Sources: Banga00, Brown01, Kar00, Orge92

Slide 56

What we’re NOT trying to do
• Invent new recovery mechanisms for NinjaMail

– orthogonal
• Remove the human operator from the loop

– unrealistic. But we can maybe simplify their job.
• Eliminate human errors completely

– impossible
• Guarantee fault detection, fail-stop behavior

– orthogonal: byzantine fault-tolerance
• Precisely auto-diagnose failure root causes
• Build the world’s fastest email service

– willing to sacrifice performance for effective repair

Slide 57

Ninja details

Network

Client Client Client
Client• Framework for cluster-

based Internet services
– SPMC programming model
– built-in mechanisms

» clone groups (virtual nodes)
» partitions
» FE connection manager
» asynchronous comm. layer

– built-in services
» distributed hash table
» streaming, txnal file system

– size: ~20,000 lines of code
» NinjaMail: ~3,000
» file system: ~5,000
» hash table: ~12,000

Connection
Manager

Shared State: hash table, FS

Threads

Local state

Slide 58

Context: repair-centric design
• The philosophy of repair-centric design is
rarely seen
– mostly found in “restartable systems”

» Recursive Restartability repairs Heisenbugs via reboot
» soft-state designs (TACC, Ninja, some production services)

tolerate coding errors by restarting errant workers
– our approach is much broader and adds human focus

» almost no work in systems and fault-tolerance community on
tolerating human error

» UI work minimizes human errors, but cannot prevent entirely

• Some repair-centric mechanisms more common
– but not in service to repair-centric philosophy
– unique: maintenance undo, proactive verification via

online fault-injection

Sources: Candea01, Fox97, Ninja01

Slide 59

Timeline

Setup & Stage 1 Stage 3 Stg. 4

FinalPilot

Initial collection Final&Anal.

Write

S

L

O

P

2Q01 3Q01 4Q01 1Q02 2Q02 3Q02 4Q02 1Q03

4/01 7/01 10/01 1/02 4/02 7/02 10/02 1/03 4/03

Stage 2

yellow = committed
pink = time permitting

Development

Failure Data
Collection

Human
Trials

Writing

• At minimum, committed to:
– stage 1 (undo) and stage 3 (exercising repair)
– a partial implementation of stage 2 (online verification)
– failure data collection
– availability benchmarking using human trials

Slide 60

Research Plan
• Evaluate the repair-centric hypothesis by

– identifying repair-centric design techniques
– implementing the design techniques in a prototype
– assessing the resulting availability improvements using

availability benchmarks

• Target application: Internet email service

• Staged research plan
– addresses practical concerns of scope, new grads
– provides coherent fallback positions

Slide 61

Context: implementation platform
• Base implementation: NinjaMail

– research implementation from UCB Ninja group
– already implements non-repair-centric HA techniques

» clustered, replicated, load-balanced, modular, restartable
– written in Java in the Ninja environment

» low-level Ninja mechanisms useful for repair-centric design
– using existing system increases relevance, saves work

Slide 62

Staged research plan
• Techniques for ROC

– 1) fault isolation
1) undo: the ultimate repair mechanism

» tolerate human error and repair unanticipated failures
2) online verification: fully-integrated online testing

» detect failures quickly to expedite repair
3) exercising repair: online fault-injection

» provide trust in repair mechanisms and train operators
4) diagnosis: dependency and fault tracking

» assist operator in pinpointing failures to expedite repair

• Evaluation can be done after any stage

	Embracing Failure: Availability via Recovery-Oriented Computing (ROC)
	Outline
	Motivation for a new philosophy
	Traditional HA vs. Internet reality
	Facts of life
	Recovery-Oriented Computing (ROC)
	ROC systems
	Context: ROC design
	Outline
	Approaching ROC design
	(1) Isolation and redundancy
	Approaches to isolation
	(2) Online verification
	More online verification
	Online verification of operators
	(3) Undo
	(4) Diagnosis
	Outline
	First ROC implementation target
	ROC-I system
	First ROC implementation target
	Outline
	Evaluating ROC systems
	Availability benchmarking 101
	Example: email application
	Fault injection
	Evaluating ROC: human aspects
	Summary
	Acknowledgements
	End
	Contributions
	Human error rate experiments
	What causes un-availability?
	How does ROC differ from Fault Tolerant Computing?
	Traditional HA vs. repair-centric
	Assumptions
	Undo
	Undo examples
	Undo context
	Undo implementation
	Undo implementation (2)
	Undo issues
	Stage 2: Online verification
	Issues in online verification
	Stage 3: Exercising repair
	Exercising repair: approach
	Issues in exercising repair
	Stage 4: Diagnosis aids
	Diagnosis aids
	Details: application spectrum
	Context: undo
	Context: exercising repair
	Context: online verification
	Context: diagnosis
	What we’re NOT trying to do
	Ninja details
	Context: repair-centric design
	Timeline
	Research Plan
	Context: implementation platform
	Staged research plan

