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Motivation for a new philosophy
• Internet service availability is a big concern

– outages are frequent
» 65% of IT managers report that their websites were 

unavailable to customers over a 6-month period
• 25%: 3 or more outages

– outages costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $   225,000/hr
» Amazon.com: $   180,000/hr
» social effects: negative press, loss of customers who “click 

over” to competitor
– but, despite marketing, progress seems slow. . .

• Why?

Source: InternetWeek 4/3/2000
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Traditional HA vs. Internet reality
• Traditional HA env’t

– stable
» functionality
» software
» workload and scale

– high-quality infrastructure 
designed for high availability

» robust hardware: fail-fast, 
duplication, error checking 

» custom, well-tested, 
single-app software

» single-vendor systems

– certified maintenance
» phone-home reporting
» trained vendor technicians

• Internet service env’t
– dynamic and evolving

» weekly functionality changes
» rapid software development
» unpredictable workload and 

fast growth
– commodity infrastructure 

coerced into high availability
» cheap hardware lacking 

extensive error-checking
» poorly-tested software 

cobbled together from off-
the-shelf and custom code

» multi-vendor systems
– ad-hoc maintenance

» by local or co-lo. techs
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Facts of life
• Realities of Internet service environment:

– hardware and software failures are inevitable
» hardware reliability still imperfect
» software reliability thwarted by rapid evolution
» Internet system scale exposes second-order failure modes

– unanticipated failures are inevitable
» commodity components do not fail cleanly
» black-box system design thwarts models
» seemingly-obscure failure modes are normal

– human operators are imperfect
» human error accounts for ~50% of all system failures
» human error probability is 10%-100% under stress

• Traditional HA doesn’t address these realities!

Sources: Gray86, Hamilton99, Kuhn97, Menn99, Murphy95, Perrow99, Pope86
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Recovery-Oriented Computing (ROC)
“If a problem has no solution, it may not be a problem, 

but a fact, not to be solved, but to be coped with over time”
— Shimon Peres

• Failures are a fact, and recovery/repair is 
how we cope with them

• Hypothesis: improving recovery will improve 
availability
– availability =     MTTF

(MTTF + MTTR)
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ROC systems
• A recovery-oriented system

– uses recovery and repair to tolerate failures of 
hardware, software, and humans

– provides rapid recovery
» efficiently detects and diagnoses failures

– provides effective recovery
» proactively verifies efficacy and speed of repair procedures

– provides robust recovery
» tolerates errors during repair and maintenance
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Context: ROC design
• Vs. traditional fault-tolerance approaches

– different philosophy
» traditional: focus on HW; assume good software, operators

• build good SW by controlling development, modeling
» repair-centric: assume that any HW, SW, operator can fail

• assume environment too dynamic to control or model
– some shared techniques

» testing, checkpoints, fault-injection, diagnosis
» but applied differently: online, system-wide, without models

• Other existing recovery-oriented approaches
– restartable systems

» Recursive Restartability, soft-state worker frameworks
– application-level checkpoint recovery

Sources: Candea01, Fox97, Lowell98, Lowell00, Ninja01 
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Approaching ROC design
• Tentative principles of ROC design

1) isolation and redundancy: fault containment
» prevent failure propagation and enable proactive testing

2) online verification: fully-integrated online testing
» detect failures quickly to expedite repair
» provide trust in repair mechanisms and human operators

3) undo: the ultimate repair mechanism?
» tolerate human error and repair unanticipated failures

4) diagnosis: dependency and fault tracking
» assist operator in pinpointing failures to expedite repair
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(1) Isolation and redundancy
• System is redundant

– sufficient HW redundancy/data replication => part of 
system down but satisfactory service still available

– enough to survive 2nd failure or more during recovery
• System is partitionable

– to isolate faults
– to enable online repair/recovery
– to enable online HW growth/SW upgrade
– to enable operator training/expand experience on 

portions of real system
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Approaches to isolation
• Shared-nothing cluster design

– no shared storage between nodes
– total physical partitioning of nodes possible via 

network disconnection
– system versions can coexist: easy expansion, upgrades

• HW support to limit scope of faults
– separate address spaces whenever possible
– queue-based communication between processes
– read/write protection of memory pages
– physical (electrical) network partitioning

• Geographic replication for last-resort isolation
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(2) Online verification
• System enables input insertion, output check 
of all modules (including fault insertion)
– to check module operation to find failures faster

» correctness and performance
– to test correctness of recovery mechanisms

» insert faults and known-incorrect inputs
» also enables availability benchmarks

– to discover if warning systems are broken
– to expose and remove latent errors from each system
– to train/expand experience of operator
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More online verification
• Modules (HW and SW) perform redundant 
calculation to help discover errors
– program checking analogy: if computation is O(nx), 

(x > 1) and if check is O(n), little cost to check
– extension of assertion checking, checksums, ECC-like 

approaches to all software and hardware
• System proactively discovers its configuration

– including interconnect and power supply topology, etc.
– verifies available redundancy, thwarts human mistakes

• System continuously verifies global invariants 
– use “conservation law analysis” as in industrial plants 

to prevent loss, misdirection of data
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Online verification of operators
• To expand operator experience beyond normal 
events, regular fault insertion on live system
– provide training for new operators
– familiarize operators with failure modes, repair tasks

» reduce human error potential
– test operator performance during repair

» results reflected back to management to discover in advance 
if there is a people problem

– use partitioning and isolation mechanisms to protect 
production data during testing/training
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(3) Undo
• ROC system should offer Undo

– to recover from operator errors
» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– to recover from inevitable SW errors
» restore entire system state to pre-error version

– to recover from operator training via fault-insertion
– to replace traditional backup and restore?

• Implement using checkpoint and logging 
technology
– restrict semantics and granularity for simpler 

implementation, lower overhead
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(4) Diagnosis
• System assists human in diagnosing problems

– root-cause analysis to suggest possible failure points
» track resource dependencies of all requests
» correlate symptomatic requests with component dependency 

model to isolate culprit components
– “health” reporting to detect failed/failing components

» failure information, self-test results propagated upwards
– unified status console to highlight improper behavior, 

predict failure, and suggest corrective action
• Log faults, errors, failures and recovery

– to create a library of failures
» for future diagnoses, training, fault-injection, and research
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First ROC implementation target
• Hardware: ROC-I cluster

– 64-node PC cluster with integrated storage
– special features for ROC-based high availability

» support for hardware fault-injection
» support for partitioning at the electrical level
» support for topology discovery of network and power
» highly instrumented hardware enables online HW verification
» integrated diagnostic system: per-node diagnostic 

processors and independent diagnostic network
– modular, cable-less “brick” design enables easy 

maintenance, reduces human-induced HW failures
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ROC-I Brick Node
• Pentium-II/266
• 256 MB DRAM
• 18 GB SCSI (or IDE) disk
• 4x100Mb Ethernet
• m68k diagnostic processor & CAN diagnostic network
• Packaged in standard half-height RAID array canister
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ROC-I system
• 64-node cluster of nodes, 1.1TB storage

– cluster nodes are plug-and-play, intelligent, network-
attached storage “bricks”

» a single field-replaceable unit to simplify maintenance
– more CPU per disk than NAS or cluster architectures

ROC-I Chassis
64 nodes, 8 per tray
2 levels of switches
•20 100 Mb/s
•2 1 Gb/s
Environment Monitoring:
UPS, redundant PS,
fans, heat and vibration 
sensors...

Storage-Oriented Node “Brick”
Portable PC CPU: Pentium II/266 + DRAM

Redundant NICs (4 100 Mb/s links)
Diagnostic Processor 

Disk

Half-height canister
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First ROC implementation target
• Software application: Internet email service

– simple, but enough complexity to be interesting
» hard state, rich data, relaxed consistency requirements

Simple ComplexEmail

web
server

xform.
proxy

block
server

search
engine

file
server

e-commerce
app. server

SQL
DBMS

– techniques for email should generalize
» but stronger consistency may add complexity

– proposed base email implementation: NinjaMail
» research implementation from UCB Ninja group
» provides needed infrastructure for investigating ROC



Slide 23

Outline
• Motivation for ROC

• Principles of ROC design

• Initial ROC implementation target

• Evaluating ROC: availability benchmarks

• Summary



Slide 24

Evaluating ROC systems
• Traditional benchmarks focus on performance

– ignore availability
– assume perfect hardware, software, human operators

• Evaluating ROC requires evaluating availability 
gains from repair-oriented design techniques
– requires availability benchmarking

» a technique we developed in earlier work
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Availability benchmarking 101
• Availability benchmarks quantify system 
behavior under failures and maintenance

• They require
– a realistic workload for the system
– quality of service metrics and tools to measure them
– fault-injection to simulate failures
– human operators to perform repairs

Time
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QoS degradationfailure

normal behavior
(99% conf.)
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Example: email application
• Workload

– SPECmail2001 industry-standard email benchmark

• Quality of service metrics
– performance (SPECmail messages per minute)
– error rate (lost or corrupted messages and mailboxes)
– consistency (fraction of inconsistent mailboxes)
– human maintenance time and error rate
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Fault injection
• Fault workload

– must accurately reflect failure modes of real-world 
Internet service environments

» plus random tests to increase coverage, simulate Heisenbugs
– but, no existing public failure dataset

» we have to collect this data
» a challenge due to proprietary nature of data
» interest expressed by Microsoft, IBM, and Hotmail

– major contribution will be to collect, anonymize, and 
publish a modern set of failure data

• Fault injection harness
– build into system: needed anyway for online 

verification
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Evaluating ROC: human aspects
• Must include humans in availability benchmarks

– to verify effectiveness of undo, training, diagnostics
– humans act as system administrators

• Subjects should be admin-savvy
– system administrators
– CS graduate students

• Challenge will be compressing timescale
– i.e., for evaluating training

• We have some experience with these trials
– earlier work in maintainability benchmarks used 5-

person pilot study
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Summary
• ROC: Recovery-Oriented Computing

– a new approach to increasing availability by focusing
on recovery and repair

– based on realities of today’s Internet service env’t
– tackles the universally-ignored problem of human error

• A departure from traditional HA philosophy
– embracing failure, not attempting perfection
– model of proactive testing/verification, on live systems

• ROC offers the potential for unprecedented 
advances in availability
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End
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Contributions
• New philosophy for high-availability design

• Definition of repair-centric design techniques
– addressing hardware, software, and human failures

• Prototype repair-centric system implementation

• Quantitative, human-aware availability 
evaluation methodology
– including collection and characterization of data on 

real-world system failure modes and maintenance tasks
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Human error rate experiments
• Human error rates during simple RAID repair

– 5 trained subjects repeatedly repairing disk failures
– aggregate error rate across subjects plotted over time
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What causes un-availability?
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• Many different factors are involved
– human behavior during maintenance dominates

Source: Murphy95
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How does ROC differ from 
Fault Tolerant Computing?

• Systems like Tandem, IBM mainframes 
concentrate on Hardware Failures
– Mirrored disks, Redundant cross-checked CPUs, …
– Designed to handle 1 failure until repaired

• Also some work on Software failures: 
Tandem’s process pairs, transactions, …
– Rather than embracing failure, goal is SW perfection

• No attention to human failures
• FTC works on improving reliability vs. 
recovery/repair

• Generally ROC is synergistic with FTC
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Traditional HA vs. repair-centric
• Traditional HA system

– hardware-centric focus
– assumes robust software

» by controlling entire stack
– assumes robust operator

» by controlling maintenance
– may not tolerate errors 

during repair/maintenance

• Repair-centric system
– tolerates hardware, 

software, human errors
– assumes black-box software 

stack
– tolerates operator error
– tolerates errors during 

maintenance/repair
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Assumptions
• Cluster-like environment

– replicated data and services
– partitionable hardware

• Single-application system
• Modular HW/SW design
• Availability trumps performance

– willing to sacrifice performance to increase availability
• Extra resources are available

– willing to overprovision resources to improve 
availability

» especially inexpensive disks and disk bandwidth
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Undo
• Undo definition

– undo restores modified system state to a previous 
snapshot while preserving externally-initiated updates

» i.e., for email, it restores state while preserving mail delivery 
and user mailbox modifications

• Undo is the most fundamental repair-centric 
design mechanism
– provides a way to tolerate human errors

» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– allows recovery from inevitable HW/SW errors
» restore entire system state to pre-error version

– subsumes traditional backup and restore
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Undo examples
• Tolerating human maintenance errors

– operator disconnects wrong component during repair
» undo: replace component, system continues normally

– operator installs software upgrade that corrupts data 
or performs poorly (E*Trade, EBay)

» undo: roll-back upgrade, restore uncorrupted data, replay 
interim requests

– operator overwrites data store or critical config file
» undo: restore data store, config state; replay lost requests

• Tolerating failures
– hardware or software failure corrupts data

» undo: restore snapshot and replay interim requests
– system destabilizes when new hardware is added

» undo: revert system configuration state to disable hardware
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Undo context
• Similar to existing checkpoint techniques...

– file system snapshots (e.g., NetApp)
– DBMS log-based recovery
– application checkpointing for failure recovery

• ...but with some new twists
– use for tolerating human mistakes
– use at system level as well as application level

» mandatory for tolerating errors during repair/maintenance
– preservation of externally-initiated updates

» logging/replay at external interfaces and full state 
restoration avoid inherent save-work/lose-work conflict

Sources: Hitz95, Lowell98, Lowell00, Mohan92
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Undo implementation
• As a repair mechanism, undo must be simple

– no complex fine-grained distributed checkpoints, etc.
• Two types of simple undo

1) allow replacement of incorrectly-removed components
» enforce queuing in front of all removable resources
» spill queues to disk to allow reasonable replacement window
» Ninja’s queue-based communication model should match well

2) coarse-grained maintenance-undo of system state
» provide cluster-wide hard state rollback mechanism with 

preservation of external updates (like mail delivery)
» leverage properties of email service to simplify 

implementation
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Undo implementation (2)
• Coarse-grained maintenance undo

– use standard snapshot and logging techniques
– restrict semantics to simplify implementation

» coarse-grained in space: undo affects entire cluster partition
» coarse-grained in time: undo rolls back to a previous snapshot
» undo restores only system hard-state

• software, config. files, mail store contents
• updates preserved by logging and replaying at external 

interfaces
• enabled by Ninja design of stateless workers

– these semantics are sufficient 
» coarse granularity is appropriate for a repair mechanism
» email can tolerate inconsistencies during undo/rollback
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Undo issues
• Open issues in implementing undo

– defining undo points
» simplest: a special “undo mode” for tolerating human error
» but periodic snapshots are needed for repairing 

unanticipated failures
– snapshot and logging mechanisms

» overhead affects granularity of undo points
» with cheap disks and disk bandwidth, are simple but high-

overhead schemes acceptable?
– protecting undo from failures

» snapshots, external request logs must be independent
» undo should be tested like any repair mechanism: stage 3



Slide 44

Stage 2: Online verification
• Goal: expedite repair

– expose latent problems for repair
– reduce failure propagation with faster detection

• Techniques
– continuously verify HW & SW component operation

» check correctness to detect bugs and hard failures
» check performance to detect bottlenecks and soft failures
» use real test inputs, not heartbeats

– add verification at all component interfaces
» check received data against specifications, checksums

– check global system properties
» use “conservation law analysis” as in industrial plants [Lind81]

to prevent loss, misdirection of data
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Issues in online verification
• Standard testing issues

– input selection, result verification, coverage analysis
• Online testing challenges

– ensuring non-destructive operation
» perform testing on an isolated partition of the cluster
» use hardware isolation and existing Ninja partitioning and 

node-reincorporation mechanisms
– detecting dynamic performance problems

» check all tests against running statistical estimates of range 
of normal performance

• Developing global conservation laws for email
– example: rate of incoming messages must equal sum of 

rates of additions to user mailboxes
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Stage 3: Exercising repair
• Repair mechanisms are often untrustworthy

– buggy automatic recovery code
– humans unfamiliar with system repair procedures

• Goal: proactively verify repair mechanisms by 
exercising them in realistic environment
– detect broken recovery code so it isn’t relied on
– provide framework for testing recovery code
– familiarize operators with failure modes and repair 

procedures, and test them
• Basic technique: fault-injection

– performed in online, production system!
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Exercising repair: approach
• Inject realistic faults to simulate failures

– targeted faults simulate most likely failure modes
– random faults capture tail of the failure distribution

• Allow automatic recovery attempt
– if recovery fails or is not available, log fault and use in 

human exercises
» approach is self-tuning for level of automatic recovery

• Perform human training/testing
– using fault set that failed automatic recovery

• Do testing on isolated subset of system
– to avoid damage to production system
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Issues in exercising repair
• Fault injection

– need realistic fault set and injection harness
– also needed for evaluation -> discussed later

• Verification
– straightforward for targeted faults

» effects are known
– a challenge for random faults

» use stage 2 testing and verification infrastructure

• Protection
– use partition-isolation mechanisms from stage 2
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Stage 4: Diagnosis aids
• Goal: assist human diagnosis, not subsume it

– reduce space of possible root causes of failure
– provide detailed “health status” of all components

• Technique #1: dependency analysis
– model dependencies of requests on system resources

» use model to identify potential resource failures when a 
request fails

» correlate dependencies across symptomatic requests to 
reduce failure set

– generate model dynamically
» stamp requests with ID of each resource/queue they touch

– issues
» tracking dependencies across decoupling points
» accounting for failures in background non-request processing
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Diagnosis aids
• Technique #2: propagating fault information

– explicitly propagate component failure and recovery 
information upward

» provide “health status” of all components
» can attempt to mask symptoms, but still inform upper layers
» rely on online verification infrastructure for detection

– issues
» devising a general representation for health information
» using health information to let application participate in 

repair
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Details: application spectrum
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Context: undo
• Undo is common for application recovery

– database transaction rollback
– checkpoint/restore of long-running scientific codes
– app. checkpointing may help tolerate Heisenbugs

• But is rare at the system level
– only common example is snapshotting file systems

» Network Appliance, new BSD FFS, Elephant, etc.
– system-level undo needed to handle maintenance 

errors
• Implementing undo requires implementing 
standard recovery techniques at system level
– checkpointing, logging, snapshots, . . .

Sources: Hitz95, Lowell98, Lowell00, Mohan92
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Context: exercising repair
• Similar to traditional “fire-drill” testing

– but automated, so it really gets done
– unique to perform testing in context of live system 

using fault-injection
• Training aspect is similar to offline training

– Tandem’s “uptime champion” uses pilot-system-trained 
operators to increase availability

– aircraft industry has long-standing tradition of 
simulator-based training to reduce human error

– our approach provides same, but on live system
• Built-in fault injection similar to mainframes

– IBM 3090, ES/9000 used built-in fault injection, but 
only during test-floor burn-in

Sources: Bartlett01, Merenda92, Nawrocki81 
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Context: online verification
• Most existing approaches are in hardware

– lockstep hardware in mainframe and FT systems
– ECC and other hardware verification schemes
– hardware Built-In-Self-Test (BIST), online & offline

• Online software techniques are usually ad-hoc
– assertion checking
– heartbeats
– checksums

• We systematically extend hardware 
techniques to software and system level

Sources: Gray86, Spainhower92, Spainhower98, Steininger99
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Context: diagnosis
• One-off system-specific diagnosis aids

– NetApp network diagnoser: cross-layer correlation 
and expert-system approaches

• General diagnostic methods
– expert systems and fault-tree approaches

» all require good understanding/model of failure modes, and 
thus conflict with real-world observations

– dependency-based root-cause analysis
» requires system model, but only at level of resource 

dependencies
» our request-tracing approach dynamically discovers resource 

dependency model

Sources: Banga00, Brown01, Kar00, Orge92
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What we’re NOT trying to do
• Invent new recovery mechanisms for NinjaMail

– orthogonal
• Remove the human operator from the loop

– unrealistic. But we can maybe simplify their job.
• Eliminate human errors completely

– impossible
• Guarantee fault detection, fail-stop behavior

– orthogonal: byzantine fault-tolerance
• Precisely auto-diagnose failure root causes
• Build the world’s fastest email service

– willing to sacrifice performance for effective repair
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Ninja details

Network

Client Client Client
Client• Framework for cluster-

based Internet services
– SPMC programming model
– built-in mechanisms

» clone groups (virtual nodes)
» partitions
» FE connection manager
» asynchronous comm. layer

– built-in services
» distributed hash table
» streaming, txnal file system

– size: ~20,000 lines of code
» NinjaMail: ~3,000
» file system: ~5,000
» hash table: ~12,000

Connection 
Manager

Shared State: hash table, FS

Threads

Local state
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Context: repair-centric design
• The philosophy of repair-centric design is 
rarely seen
– mostly found in “restartable systems”

» Recursive Restartability repairs Heisenbugs via reboot
» soft-state designs (TACC, Ninja, some production services) 

tolerate coding errors by restarting errant workers
– our approach is much broader and adds human focus

» almost no work in systems and fault-tolerance community on 
tolerating human error

» UI work minimizes human errors, but cannot prevent entirely

• Some repair-centric mechanisms more common
– but not in service to repair-centric philosophy
– unique: maintenance undo, proactive verification via 

online fault-injection

Sources: Candea01, Fox97, Ninja01 



Slide 59

Timeline

Setup & Stage 1 Stage 3 Stg. 4

FinalPilot

Initial collection Final&Anal.

Write

S

L

O

P

2Q01 3Q01 4Q01 1Q02 2Q02 3Q02 4Q02 1Q03

4/01 7/01 10/01 1/02 4/02 7/02 10/02 1/03 4/03

Stage 2

yellow = committed
pink = time permitting

Development

Failure Data
Collection

Human
Trials

Writing

• At minimum, committed to:
– stage 1 (undo) and stage 3 (exercising repair)
– a partial implementation of stage 2 (online verification)
– failure data collection
– availability benchmarking using human trials
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Research Plan
• Evaluate the repair-centric hypothesis by

– identifying repair-centric design techniques 
– implementing the design techniques in a prototype
– assessing the resulting availability improvements using 

availability benchmarks

• Target application: Internet email service

• Staged research plan
– addresses practical concerns of scope, new grads
– provides coherent fallback positions
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Context: implementation platform 
• Base implementation: NinjaMail

– research implementation from UCB Ninja group
– already implements non-repair-centric HA techniques

» clustered, replicated, load-balanced, modular, restartable
– written in Java in the Ninja environment

» low-level Ninja mechanisms useful for repair-centric design
– using existing system increases relevance, saves work
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Staged research plan
• Techniques for ROC

– 1) fault isolation
1) undo: the ultimate repair mechanism

» tolerate human error and repair unanticipated failures
2) online verification: fully-integrated online testing

» detect failures quickly to expedite repair
3) exercising repair: online fault-injection

» provide trust in repair mechanisms and train operators
4) diagnosis: dependency and fault tracking

» assist operator in pinpointing failures to expedite repair

• Evaluation can be done after any stage
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