
Slide 1

Embracing Failure:
Availability via Repair-centric Design

Aaron Brown

Qualifying Examination
13 April 2001

Slide 2

Contributions
• New philosophy for high-availability design

• Definition of repair-centric design techniques
– addressing hardware, software, and human failures

• Prototype repair-centric system implementation

• Quantitative, human-aware availability
evaluation methodology
– including collection and characterization of data on

real-world system failure modes and maintenance tasks

Slide 3

Outline
• Grand vision: repair-centric design philosophy

• Research and implementation plan

• Evaluation plan

• Summary and timeline

Slide 4

Motivation for a new philosophy
• Internet service availability is a big concern

– outages are frequent
» 65% of IT managers report that their websites were

unavailable to customers over a 6-month period
• 25%: 3 or more outages

– outages costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $ 225,000/hr
» Amazon.com: $ 180,000/hr
» social effects: negative press, loss of customers who “click

over” to competitor
– but, despite marketing, progress seems slow. . .

• Why?

Source: InternetWeek 4/3/2000

Slide 5

Traditional HA vs. Internet reality
• Traditional HA env’t

– stable
» functionality
» software
» workload and scale

– high-quality infrastructure
designed for high availability

» robust hardware: fail-fast,
duplication, error checking

» custom, well-tested,
single-app software

» single-vendor systems

– certified maintenance
» phone-home reporting
» trained vendor technicians

• Internet service env’t
– dynamic and evolving

» weekly functionality changes
» rapid software development
» unpredictable workload and

fast growth
– commodity infrastructure

coerced into high availability
» cheap hardware lacking

extensive error-checking
» poorly-tested software

cobbled together from off-
the-shelf and custom code

» multi-vendor systems
– ad-hoc maintenance

» by local or co-lo. techs

Slide 6

Facts of life
• Realities of Internet service environment:

– hardware and software failures are inevitable
» hardware reliability still imperfect
» software reliability thwarted by rapid evolution
» Internet system scale exposes second-order failure modes

– system failure modes cannot be modeled or predicted
» commodity components do not fail cleanly
» black-box system design thwarts models
» unanticipated failures are normal

– human operators are imperfect
» human error accounts for ~50% of all system failures
» human error probability is 10%-100% under stress

• Traditional HA doesn’t address these realities!

Sources: Gray86, Hamilton99, Menn99, Murphy95, Perrow99, Pope86

Slide 7

Repair-centric hypothesis
“If a problem has no solution, it may not be a problem,

but a fact, not to be solved, but to be coped with over
time” — Shimon Peres

• Failures are a fact, and repair is how we cope
with them

• Improving repair will improve availability
– availability = MTTF

(MTTF + MTTR)

Slide 8

Repair-centric systems
• A repair-centric system

– uses repair to tolerate failures of hardware, software,
and humans

– provides rapid repair
» efficiently detects and diagnoses failures

– provides effective repair
» proactively verifies efficacy and speed of repair procedures

– provides robust repair
» tolerates errors during repair and maintenance

Slide 9

Context: repair-centric design
• Vs. traditional fault-tolerance approaches

– different philosophy
» traditional: focus on HW; assume good software, operators

• build good SW by controlling development, modeling
» repair-centric: assume that any HW, SW, operator can fail

• assume environment too dynamic to control or model
– some shared techniques

» testing, checkpoints, fault-injection, diagnosis
» but applied differently: online, system-wide, without models

• Other existing repair-centric approaches
– restartable systems

» Recursive Restartability, soft-state worker frameworks
– application-level checkpoint recovery

Sources: Candea01, Fox97, Lowell98, Lowell00, Ninja01

Slide 10

Outline
• Grand vision: repair-centric design philosophy

• Research and implementation plan

• Evaluation plan

• Summary and timeline

Slide 11

Research Plan
• Evaluate the repair-centric hypothesis by

– identifying repair-centric design techniques
– implementing the design techniques in a prototype
– assessing the resulting availability improvements using

availability benchmarks

• Target application: Internet email service

• Staged research plan
– addresses practical concerns of scope, new grads
– provides coherent fallback positions

Slide 12

Context: application
• Application: Internet email service

– simple, but enough complexity to be interesting
» hard state, rich data, relaxed consistency requirements

EmailSimple Complex

web
server proxy

xform.
server
block search

engine server
file e-commerce

app. server
SQL

DBMS

– techniques for email should generalize
» but stronger consistency may add complexity

– realistic workloads available for email

Slide 13

Context: implementation platform
• Base implementation: NinjaMail

– research implementation from UCB Ninja group
– already implements non-repair-centric HA techniques

» clustered, replicated, load-balanced, modular, restartable
– written in Java in the Ninja environment

» low-level Ninja mechanisms useful for repair-centric design
– using existing system increases relevance, saves work

Slide 14

Staged research plan
• Big picture of the stages

1) undo: the ultimate repair mechanism
» tolerate human error and repair unanticipated failures

2) online verification: fully-integrated online testing
» detect failures quickly to expedite repair

3) exercising repair: online fault-injection
» provide trust in repair mechanisms and train operators

4) diagnosis: dependency and fault tracking
» assist operator in pinpointing failures to expedite repair

• Evaluation can be done after any stage

Slide 15

Stage 1: Undo
• Undo definition

– undo restores modified system state to a previous
snapshot while preserving externally-initiated updates

» i.e., for email, it restores state while preserving mail delivery
and user mailbox modifications

• Undo is the most fundamental repair-centric
design mechanism
– provides a way to tolerate human errors

» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– allows recovery from inevitable HW/SW errors
» restore entire system state to pre-error version

– subsumes traditional backup and restore

Slide 16

Undo examples
• Tolerating human maintenance errors

– operator disconnects wrong component during repair
» undo: replace component, system continues normally

– operator installs software upgrade that corrupts data
or performs poorly (E*Trade, EBay)

» undo: roll-back upgrade, restore uncorrupted data, replay
interim requests

– operator overwrites data store or critical config file
» undo: restore data store, config state; replay lost requests

• Tolerating failures
– hardware or software failure corrupts data

» undo: restore snapshot and replay interim requests
– system destabilizes when new hardware is added

» undo: revert system configuration state to disable hardware

Slide 17

Undo context
• Similar to existing checkpoint techniques...

– file system snapshots (e.g., NetApp)
– DBMS log-based recovery
– application checkpointing for failure recovery

• ...but with some new twists
– use for tolerating human mistakes
– use at system level as well as application level

» mandatory for tolerating errors during repair/maintenance
– preservation of externally-initiated updates

» logging/replay at external interfaces and full state
restoration avoid inherent save-work/lose-work conflict

Sources: Hitz95, Lowell98, Lowell00, Mohan92

Slide 18

Undo implementation
• As a repair mechanism, undo must be simple

– no complex fine-grained distributed checkpoints, etc.
• Two types of simple undo

1) allow replacement of incorrectly-removed components
» enforce queuing in front of all removable resources
» spill queues to disk to allow reasonable replacement window
» Ninja’s queue-based communication model should match well

2) coarse-grained maintenance-undo of system state
» provide cluster-wide hard state rollback mechanism with

preservation of external updates (like mail delivery)
» leverage properties of email service to simplify

implementation

Slide 19

Undo implementation (2)
• Coarse-grained maintenance undo

– use standard snapshot and logging techniques
– restrict semantics to simplify implementation

» coarse-grained in space: undo affects entire cluster partition
» coarse-grained in time: undo rolls back to a previous snapshot
» undo restores only system hard-state

• software, config. files, mail store contents
• updates preserved by logging and replaying at external

interfaces
• enabled by Ninja design of stateless workers

– these semantics are sufficient
» coarse granularity is appropriate for a repair mechanism
» email can tolerate inconsistencies during undo/rollback

Slide 20

Undo issues
• Open issues in implementing undo

– defining undo points
» simplest: a special “undo mode” for tolerating human error
» but periodic snapshots are needed for repairing

unanticipated failures
– snapshot and logging mechanisms

» overhead affects granularity of undo points
» with cheap disks and disk bandwidth, are simple but high-

overhead schemes acceptable?
– protecting undo from failures

» snapshots, external request logs must be independent
» undo should be tested like any repair mechanism: stage 3

Slide 21

Stage 2: Online verification
• Goal: expedite repair

– expose latent problems for repair
– reduce failure propagation with faster detection

• Techniques
– continuously verify HW & SW component operation

» check correctness to detect bugs and hard failures
» check performance to detect bottlenecks and soft failures
» use real test inputs, not heartbeats

– add verification at all component interfaces
» check received data against specifications, checksums

– check global system properties
» use “conservation law analysis” as in industrial plants [Lind81]

to prevent loss, misdirection of data

Slide 22

Issues in online verification
• Standard testing issues

– input selection, result verification, coverage analysis
• Online testing challenges

– ensuring non-destructive operation
» perform testing on an isolated partition of the cluster
» use hardware isolation and existing Ninja partitioning and

node-reincorporation mechanisms
– detecting dynamic performance problems

» check all tests against running statistical estimates of range
of normal performance

• Developing global conservation laws for email
– example: rate of incoming messages must equal sum of

rates of additions to user mailboxes

Slide 23

Stage 3: Exercising repair
• Repair mechanisms are often untrustworthy

– buggy automatic recovery code
– humans unfamiliar with system repair procedures

• Goal: proactively verify repair mechanisms by
exercising them in realistic environment
– detect broken recovery code so it isn’t relied on
– provide framework for testing recovery code
– familiarize operators with failure modes and repair

procedures, and test them
• Basic technique: fault-injection

– performed in online, production system!

Slide 24

Exercising repair: approach
• Inject realistic faults to simulate failures

– targeted faults simulate most likely failure modes
– random faults capture tail of the failure distribution

• Allow automatic recovery attempt
– if recovery fails or is not available, log fault and use in

human exercises
» approach is self-tuning for level of automatic recovery

• Perform human training/testing
– using fault set that failed automatic recovery

• Do testing on isolated subset of system
– to avoid damage to production system

Slide 25

Issues in exercising repair
• Fault injection

– need realistic fault set and injection harness
– also needed for evaluation -> discussed later

• Verification
– straightforward for targeted faults

» effects are known
– a challenge for random faults

» use stage 2 testing and verification infrastructure

• Protection
– use partition-isolation mechanisms from stage 2

Slide 26

Stage 4: Diagnosis aids
• Goal: assist human diagnosis, not subsume it

– reduce space of possible root causes of failure
– provide detailed “health status” of all components

• Technique #1: dependency analysis
– model dependencies of requests on system resources

» use model to identify potential resource failures when a
request fails

» correlate dependencies across symptomatic requests to
reduce failure set

– generate model dynamically
» stamp requests with ID of each resource/queue they touch

– issues
» tracking dependencies across decoupling points
» accounting for failures in background non-request processing

Slide 27

Diagnosis aids
• Technique #2: propagating fault information

– explicitly propagate component failure and recovery
information upward

» provide “health status” of all components
» can attempt to mask symptoms, but still inform upper layers
» rely on online verification infrastructure for detection

– issues
» devising a general representation for health information
» using health information to let application participate in

repair

Slide 28

Outline
• Grand vision: repair-centric design philosophy

• Research and implementation plan

• Evaluation plan

• Summary and timeline

Slide 29

Evaluation plan
• Goal: evaluate overall availability gains from
repair-centric design
– compare modified, repair-centric NinjaMail to stock

implementation

• Requires availability benchmarking
– a technique we developed in earlier work

Slide 30

Availability benchmarking 101
• Availability benchmarks quantify system
behavior under failures and maintenance

• They require
– a realistic workload for the system
– quality of service metrics and tools to measure them
– fault-injection to simulate failures
– human operators to perform repairs

Time

Q
oS

 M
et

ric

0
Repair Time

QoS degradationfailure

normal behavior
(99% conf.)

Slide 31

Availability benchmarks for email
• Workload

– SPECmail2001 industry-standard email benchmark

• Quality of service metrics
– performance (SPECmail messages per minute)
– error rate (lost or corrupted messages and mailboxes)
– consistency (fraction of inconsistent mailboxes)
– human maintenance time and error rate

Slide 32

Fault injection
• Fault workload

– must accurately reflect failure modes of real-world
Internet service environments

» plus random tests to increase coverage, simulate Heisenbugs
– but, no existing public failure dataset

» we have to collect this data
» a challenge due to proprietary nature of data
» interest expressed by Microsoft, IBM, and Hotmail

– major contribution will be to collect, anonymize, and
publish a modern set of failure data

• Fault injection harness
– build into system: needed for stage 3 (exercising

repair)

Slide 33

Evaluation: human aspects
• Must include humans in availability benchmarks

– to verify effectiveness of undo, training, diagnostics
– humans act as system administrators

• Subjects should be admin-savvy
– system administrators
– CS graduate students

• Challenge will be compressing timescale
– i.e., for evaluating training

• We have some experience with these trials
– earlier work in maintainability benchmarks used 5-

person pilot study

Slide 34

Summary
• Repair-centric design hypothesis

– a new approach to increasing availability by focusing
on repair

– based on realities of today’s Internet service env’t
– tackles the universally-ignored problem of human error

• Prototyping plan in NinjaMail email service

• Evaluation plan using availability benchmarks

• If successful, a significant contribution to
state-of-the-art in high-availability design

Slide 35

Timeline

Setup & Stage 1 Stage 3 Stg. 4

FinalPilot

Initial collection Final&Anal.

Write

S

L

O

P

2Q01 3Q01 4Q01 1Q02 2Q02 3Q02 4Q02 1Q03

4/01 7/01 10/01 1/02 4/02 7/02 10/02 1/03 4/03

Stage 2

yellow = committed
pink = time permitting

Development

Failure Data
Collection

Human
Trials

Writing

• At minimum, committed to:
– stage 1 (undo) and stage 3 (exercising repair)
– a partial implementation of stage 2 (online verification)
– failure data collection
– availability benchmarking using human trials

Slide 36

End

Slide 37

Human error rate experiments
• Human error rates during simple RAID repair

– 5 trained subjects repeatedly repairing disk failures
– aggregate error rate across subjects plotted over time

Iteration
1 2 3 4 5 6 7 8 9

N
um

be
r o

f e
rr

or
s

0

1

2

3

Windows
Solaris
Linux

Slide 38

What causes un-availability?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

• Many different factors are involved
– human behavior during maintenance dominates

Source: Murphy95

Slide 39

Traditional HA vs. repair-centric
• Traditional HA system

– hardware-centric focus
– assumes robust software

» by controlling entire stack
– assumes robust operator

» by controlling maintenance
– may not tolerate errors

during repair/maintenance

• Repair-centric system
– tolerates hardware,

software, human errors
– assumes black-box software

stack
– tolerates operator error
– tolerates errors during

maintenance/repair

Slide 40

Assumptions
• Cluster-like environment

– replicated data and services
– partitionable hardware

• Single-application system
• Modular HW/SW design
• Availability trumps performance

– willing to sacrifice performance to increase availability
• Extra resources are available

– willing to overprovision resources to improve
availability

» especially inexpensive disks and disk bandwidth

Slide 41

Details: application spectrum

3

4

5

7

8

9

12

15

Total

01011Web server

13000Transforming
proxy

00023Block server

23011Search
engine

11123File server

22113Email

33330E-commerce
app. server

33333SQL
database

Query
complexity

Internal
knowledge of

data semantics
Interface
complexity

Consistency
requirement

Hard
state

Application

Slide 42

Context: undo
• Undo is common for application recovery

– database transaction rollback
– checkpoint/restore of long-running scientific codes
– app. checkpointing may help tolerate Heisenbugs

• But is rare at the system level
– only common example is snapshotting file systems

» Network Appliance, new BSD FFS, Elephant, etc.
– system-level undo needed to handle maintenance

errors
• Implementing undo requires implementing
standard recovery techniques at system level
– checkpointing, logging, snapshots, . . .

Sources: Hitz95, Lowell98, Lowell00, Mohan92

Slide 43

Context: exercising repair
• Similar to traditional “fire-drill” testing

– but automated, so it really gets done
– unique to perform testing in context of live system

using fault-injection
• Training aspect is similar to offline training

– Tandem’s “uptime champion” uses pilot-system-trained
operators to increase availability

– aircraft industry has long-standing tradition of
simulator-based training to reduce human error

– our approach provides same, but on live system
• Built-in fault injection similar to mainframes

– IBM 3090, ES/9000 used built-in fault injection, but
only during test-floor burn-in

Sources: Bartlett01, Merenda92, Nawrocki81

Slide 44

Context: online verification
• Most existing approaches are in hardware

– lockstep hardware in mainframe and FT systems
– ECC and other hardware verification schemes
– hardware Built-In-Self-Test (BIST), online & offline

• Online software techniques are usually ad-hoc
– assertion checking
– heartbeats
– checksums

• We systematically extend hardware
techniques to software and system level

Sources: Gray86, Spainhower92, Spainhower98, Steininger99

Slide 45

Context: diagnosis
• One-off system-specific diagnosis aids

– NetApp network diagnoser: cross-layer correlation
and expert-system approaches

• General diagnostic methods
– expert systems and fault-tree approaches

» all require good understanding/model of failure modes, and
thus conflict with real-world observations

– dependency-based root-cause analysis
» requires system model, but only at level of resource

dependencies
» our request-tracing approach dynamically discovers resource

dependency model

Sources: Banga00, Brown01, Kar00, Orge92

Slide 46

What we’re NOT trying to do
• Invent new recovery mechanisms for NinjaMail

– orthogonal
• Remove the human operator from the loop

– unrealistic. But we can maybe simplify their job.
• Eliminate human errors completely

– impossible
• Guarantee fault detection, fail-stop behavior

– orthogonal: byzantine fault-tolerance
• Precisely auto-diagnose failure root causes
• Build the world’s fastest email service

– willing to sacrifice performance for effective repair

Slide 47

Ninja details

Network

Client Client Client
Client• Framework for cluster-

based Internet services
– SPMC programming model
– built-in mechanisms

» clone groups (virtual nodes)
» partitions
» FE connection manager
» asynchronous comm. layer

– built-in services
» distributed hash table
» streaming, txnal file system

– size: ~20,000 lines of code
» NinjaMail: ~3,000
» file system: ~5,000
» hash table: ~12,000

Connection
Manager

Shared State: hash table, FS

Threads

Local state

Slide 48

Context: repair-centric design
• The philosophy of repair-centric design is
rarely seen
– mostly found in “restartable systems”

» Recursive Restartability repairs Heisenbugs via reboot
» soft-state designs (TACC, Ninja, some production services)

tolerate coding errors by restarting errant workers
– our approach is much broader and adds human focus

» almost no work in systems and fault-tolerance community on
tolerating human error

» UI work minimizes human errors, but cannot prevent entirely

• Some repair-centric mechanisms more common
– but not in service to repair-centric philosophy
– unique: maintenance undo, proactive verification via

online fault-injection

Sources: Candea01, Fox97, Ninja01

	Embracing Failure:Availability via Repair-centric Design
	Contributions
	Outline
	Motivation for a new philosophy
	Traditional HA vs. Internet reality
	Facts of life
	Repair-centric hypothesis
	Repair-centric systems
	Context: repair-centric design
	Outline
	Research Plan
	Context: application
	Context: implementation platform
	Staged research plan
	Stage 1: Undo
	Undo examples
	Undo context
	Undo implementation
	Undo implementation (2)
	Undo issues
	Stage 2: Online verification
	Issues in online verification
	Stage 3: Exercising repair
	Exercising repair: approach
	Issues in exercising repair
	Stage 4: Diagnosis aids
	Diagnosis aids
	Outline
	Evaluation plan
	Availability benchmarking 101
	Availability benchmarks for email
	Fault injection
	Evaluation: human aspects
	Summary
	Timeline
	End
	Human error rate experiments
	What causes un-availability?
	Traditional HA vs. repair-centric
	Assumptions
	Details: application spectrum
	Context: undo
	Context: exercising repair
	Context: online verification
	Context: diagnosis
	What we’re NOT trying to do
	Ninja details
	Context: repair-centric design

