
Slide 1

An Active Approach to
Characterizing Dynamic Dependencies

for Problem Determination

Aaron Brown
Computer Science Division

University of California at Berkeley

Gautam Kar, Alexander Keller
IBM T.J. Watson Research Center

IM 2001, 16 May 2001

Slide 2

Motivation: problem diagnosis
• Troubleshooting problems is one of the most
challenging, time-consuming management tasks
– symptoms are typically at end-user or SLA level
– root causes are typically much deeper in system

» and often confounded by system complexity
– must map symptoms to root causes to locate problems!

• Dependency models provide an invaluable aid
to root-cause analysis
– capture connections between high- and low-level

system components

Slide 3

Dependency models in a nutshell
• Use a graph (DAG) structure to capture
dependencies between system components
– if failure of A affects B, then B depends on A
– edge weights represent dependency strengths

Web Application Service

Web Service

Name Service IP Service

DB Service

OS

Customer e-commerce application

w1

w2 w3

w4 w5 w6

w8w7

Slide 4

Constructing dependency models
• For effective diagnosis, model must capture:

– static dependencies
– dynamic runtime dependencies

» e.g., dependencies induced by runtime queries
– distributed dependencies
– dependency strengths
– all at the detailed level of individual system resources

• Most existing techniques don’t meet these
challenges...

Slide 5

Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD

• Conclusions and future directions

Slide 6

Discovering dependencies
• Desired properties of approach

– identifies dynamic, runtime dependencies
– works on distributed systems
– works with only black-box view of system components
– provides direct evidence of causality
– detects dependencies only visible in failure situations

• These properties inspire an indirect, active
approach
– indirect: no explicit modeling of system
– active: perturb system to elucidate dependencies

Slide 7

Active Dependency Discovery (ADD)

Web1

DBMS1

DBMS2

App1

App2

App3

Workload

2) Systematically perturb components
1) Instrument the system and apply workload

3) Measure change in system response
4) Construct dependency model from measurement data

Slide 8

Benefits of ADD
• Coverage

– no need to rely on problems occurring naturally, as in
passive approaches

– can guarantee coverage by explicitly controlling
perturbation

• Causality
– causality easy to establish: perturbation is the cause

• Simplicity
– no application modeling or modification necessary
– existing endpoint instrumentation may be sufficient
– no complex data mining required
– applied before real problems occur

Slide 9

Drawbacks of ADD
• Invasiveness

– can be tricky to do perturbation on production system
– possible solutions:

» leverage redundancy if available (e.g., cluster system)
» run perturbation during non-production periods

(initial system setup or during scheduled downtime)
» develop low-grade perturbation techniques

• Workload-specific
– extracted models only valid for applied workload
– but, can model components of workload and recombine

later

Slide 10

Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD
– approach
– TPC-W testbed environment
– results

• Conclusions and future directions

Slide 11

Validation: e-commerce case study
• Goal: use ADD to discover dependencies in a
multi-tier e-commerce environment
– using off-the-shelf black-box software
– in a realistic environment with realistic workload

• Task: discover dependencies of user web
requests on database tables
– for each type of user request:

» extract dependencies on individual database tables
» characterize strengths of those dependencies
» hand-verify model against application source code

• Platform: TPC-W benchmark app & workload
– realistic mockup of online bookseller e-commerce site

Slide 12

TPC-W experimental testbed
System View Dependency View

User Requests
type1 type2 type14. . .

Database Tables
tbl1 tbl2 tbl10. . .

w1

w2 w3

Web Client
UWisc TPC-W RBE

Web Server
Microsoft IIS 5.0

App. Server
Apache Jakarta/Tomcat 3.1
w/UWisc TPC-W servlets

Database
IBM DB2 7.1 Enterprise DB

content

static
content

AJP

JDBC

HTTP

m
ac

hi
ne

1
m

ac
hi

ne
2

m
ac

hi
ne

3

Slide 13

Perturbation and measurement
• Perturbation applied to individual DB tables

– use DB2’s lock manager to exclusive-lock a table
– configurable “duty cycle” of lock out

» queries locked out for first x% of every 4 sec. interval
– only affects one table; no impact on overall load
– can simultaneously perturb multiple tables

• Per-request response time measured by
TPC-W front-end user emulator
– 14 different types/classes of requests
– response time is end-to-end, including network delay

Slide 14

Raw perturbation results
• Ex: Search request, ITEM table perturbed

Re
sp

on
se

 t
im

e
(m

s)

Perturbation level, time
0% 25% 50% 75% 99%

Slide 15

Raw perturbation results (2)
• Ex: Search request, CC_XACTS table perturbed

Re
sp

on
se

 t
im

e
(m

s)

Perturbation level, time
0% 25% 50% 75% 99%

Slide 16

Applying a linear model
• Linear regression on mean of log of data

– statistically positive slope gives dependency strength

Perturbation level
0.00 0.25 0.50 0.75 0.99

M
ea

n
lo

g
re

sp
on

se
 ti

m
e

4

5

6

7

8

9
ITEM
ADDRESS
COUNTRY
AUTHOR

BuyRequest transaction

R2 = 0.983

Slide 17

Summary of results
• Modeling correctly identified 41 of 42 true
dependencies at 95% confidence level
– compare to 140 potential dependencies (!)
– one false negative most likely due to insufficient data
– caveat: some glitches due to unmodeled interactions

» manifested as small negative dependency strengths
» solution: improve model or simply discard negative

strengths

Slide 18

Summary of results (2)
• Tabular representation of full dependency set:

adm
cnf

adm
req

bestsell
buyconf
buyreq

custreg
hom

e
newprod
ordrdisp
orderinq
proddet
srchreq
srchres

shopcart

ADDRESS X X X
AUTHOR X X X X X X
CC_XACTS X X
COUNTRY X X X
CUSTOMER X X X X
ITEM X X X X X X X X X X X X
ORDER_LINE - X X X
ORDERS X X X X
SHOP_CART X
SHOP_CART_L X X X

Strengths: X = (0,1] X = (1,2] X = (2,3] X = (3,4]

Table

Request

Slide 19

Using dependencies for diagnosis
• When a problem occurs:

1) identify faulty request
» from problem report, SLA violation, test requests, ...

2) select the appropriate column in dependency table
3) select the rows representing dependencies

» this is the set of potential root causes
4) investigate potential root causes, starting with

those of highest weight

Slide 20

Using dependencies for diagnosis (2)
• Can extend approach to multiple system levels

– compute one dependency matrix per level
– iterate levels from user symptoms to culprit resource

• This process may not uniquely identify problem
– but can narrow down the culprits via combinations

» isolating the effects of individual tables
» e.g., SHOP_CART_L “=” orderdisp - buyconf

– not all tables can be uniquely isolated
» but could do so by adding synthetic test requests?
» ideal is to build a basis for the whole-system

dependency matrix

Slide 21

Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD

• Conclusions and future directions

Slide 22

Conclusions and future directions
• Dependency models help problem determination

• ADD effectively discovers dependency models
– approach is uniquely positioned in the design space

» active, indirect approach finds dynamic, distributed
dependencies; works on black-box systems

– initial experimental results are promising
» very good success on TPC-W experiments

• Future directions
– techniques to integrate ADD into production systems
– investigation of end-to-end vs. layer-by-layer tradeoffs
– using dependency models for other management tasks

» impact analysis, performance optimization, ...

Slide 23

An Active Approach to
Characterizing Dynamic Dependencies

for Problem Determination

For more information:

abrown@cs.berkeley.edu
{gkar,alexk}@us.ibm.com

http://www.research.ibm.com/sysman

Slide 24

End

Slide 25

Backup slides

Slide 26

Dependencies & root-cause analysis
• There are good algorithms for root-cause
analysis using dependency data
– event correlation [Yemini96, Choi99, Gruschke98, ...]
– systematic probing via graph-traversal [Kätker95]

• But...they assume dependencies are identified
manually!
– impractical in modern systems at any interesting level

of detail
– need automatic discovery of fine-grained dependency

models to solve practical problems

Slide 27

A motivating example...
• E-commerce system with cluster database

My Web Application

IBM WebSphere 3.02

This level of detail is called a “structural” model

Apache 1.3.4

DNS

IPv4

IBM DB2 EEE
IBM DB2 EEE

IBM DB2 EEE

AIX
AIX

AIX
AIX

AIX

IBM DB2 EEE
IBM DB2 EEE

AIX

Slide 28

What’s really needed?
• Dynamic, operational dependency graphs

– based on runtime behavior, not static analysis
– computed for each type of user transaction/action

» each transaction’s graph is a subgraph of the overall
system dependency graph

– dependencies weighted by “strength” and
parameterized by workload

IBM WebSphere +
myWebStorefront

IBM DB2 EEE cluster
ORDERS

SHOP_CART

CUSTOMER

...
node1

node2

nodeN

...

1.9
2.4

3.3

2.7

Order Inquiry
Transaction

3.7

1.4

...

Slide 29

How is this useful?
• Helps restrict search space for root cause of
a problem
– presence/absence of operational dependencies tells

you where you must look
– dependency strengths may optimize search
– in most cases, cannot completely identify root cause

• Aids in system optimization
– dependency strengths reflect balance of system

• Supports “impact analysis”
– strength of dependency is a direct measure of failure

impact of a particular component

Slide 30

Dependency discovery: approaches
• Direct

– relies on human to analytically compute dependencies
» from app-specific knowledge, configuration files, ...

– impractical for realistic systems
• Indirect

– based on instrumentation and monitoring
– correlates observed failures/degradations across

components
– typically passive

» no perturbation to system beyond instrumentation
– examples: data mining, event correlation, neural-net

dependency discovery, MPP bottleneck detection

Slide 31

Challenges of an indirect approach
1) Causality

– most indirect approaches identify only correlation
2) Coverage

– passive approaches only find dependencies that are
activated while the system is monitored

– can miss important dependencies that only appear in
rare failure modes

» but these are often the most important dependencies!

• Solution: an active indirect approach
– directly perturb the system, establishing causality

and increasing coverage

Slide 32

Testbed web application
• TPC-W web commerce application

– standardized TPC benchmark
– simulates activities of a “business-oriented

transactional web server”
– implements storefront of an Internet book seller
– includes user sessions, shopping carts, browsing,

search, online ordering, “best sellers”, ...
– includes workload specification and generator

» fully parameterized
» standard mixes to simulate users that are mostly-

browsing, mostly-ordering, or shopping (mix)

– implementation in Java from University of Wisconsin

Slide 33

Dependency view: TPC-W testbed

TPC-W RBE

Apache Jakarta/
Tomcat 3.1

IBM JVM 1.1.8

Client

Microsoft IIS 5.0

m2
Win2000

m1
AIX 4.3.3

m3
AIX 4.3.3

DB2 7.1

TPC-W-UWjava

Slide 34

Experiment details
• Workload

– 90 simulated users
– TPC-W standard “shopping” mix
– an average of 11.8 unperturbed transactions/sec
– servers not saturated by this workload

• Perturbation
– only one table perturbed at a time
– 0%, 25%, 50%, 75%, 99% levels for each table
– 30 minutes of perturbation at each level

Slide 35

Limitations of the test case
• Constant workload

– can’t parameterize dependencies by workload
• Independent table perturbation

– can’t include interaction terms in model
• End-to-end performance metric

– OK here since we’re only looking at one level of system
– assumes perturbations don’t have additional effects

beyond the database
– if the dependency is not manifested in performance,

it won’t be detected
• None of these limitations are inherent

Slide 36

Modeling details
• Simple first-order linear model:

– assumes constant effects, independence, and linearity
of perturbation (under transform of m)

– let mi be some metric for transaction type i
– let µi be the mean non-perturbed value of mi
– let Pj be the level of perturbation of system element j
– then:

ri = µi + Σj (αj Pj) + ε

– the αj‘s are fit to the data, and represent the effects
of perturbation of the components j

» αj characterizes the strength of mi’s dependency on j

Slide 37

Model details
• Fit a first-order linear model:

ri = µi + Σj (αj Pj) + ε

• Estimated effects (αj) for buy request txn:
ITEM: 3.31 ± .26 SHOP_CART: 0.06 ± .26
ADDRESS: 2.49 ± .26 CC_XACTS: 0.06 ± .26
CUSTOMER: 2.41 ± .26 AUTHOR: 0.03 ± .26
SHOP_CART_LINE: 2.35 ± .26 ORDER_LINE: 0.003 ± .26
COUNTRY: 1.98 ± .26 ORDER: -0.02 ± .26

• Despite simplicity, models fit well
– R2 ranges from .906 to .996, with mean .973
– there are clearly higher-order effects present

» especially noticeable in significant negative effects
» but first-order effects dominate

Slide 38

Existing approaches
• Most popular approaches are passive

– event collection and data mining
– neural-network-based dependency discovery
– performance bottleneck detection in parallel

programs
– network fault detection
– nuclear power plant problem diagnosis

• Passive approaches have two main weaknesses:
– hard to differentiate correlation and causation
– hard to get coverage of all problem/failure cases

• Active approaches limited to postmortems

Slide 39

A less-linear result

Perturbation level
0.00 0.25 0.50 0.75 0.99

M
ea

n
lo

g
re

sp
on

se
 ti

m
e

7

8

9

10

11
ORDER
SHOPPING_CART_LINE
CC_XACTS
AUTHOR

• Not nearly as linear, but linear model still sufficient
• Example data: order confirmation transaction

	An Active Approach to Characterizing Dynamic Dependencies for Problem Determination
	Motivation: problem diagnosis
	Dependency models in a nutshell
	Constructing dependency models
	Outline
	Discovering dependencies
	Active Dependency Discovery (ADD)
	Benefits of ADD
	Drawbacks of ADD
	Outline
	Validation: e-commerce case study
	TPC-W experimental testbed
	Perturbation and measurement
	Raw perturbation results
	Raw perturbation results (2)
	Applying a linear model
	Summary of results
	Summary of results (2)
	Using dependencies for diagnosis
	Using dependencies for diagnosis (2)
	Outline
	Conclusions and future directions
	An Active Approach to Characterizing Dynamic Dependencies for Problem Determination
	End
	Backup slides
	Dependencies & root-cause analysis
	A motivating example...
	What’s really needed?
	How is this useful?
	Dependency discovery: approaches
	Challenges of an indirect approach
	Testbed web application
	Dependency view: TPC-W testbed
	Experiment details
	Limitations of the test case
	Modeling details
	Model details
	Existing approaches
	A less-linear result

