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Motivation: problem diagnosis
• Troubleshooting problems is one of the most 
challenging, time-consuming management tasks
– symptoms are typically at end-user or SLA level
– root causes are typically much deeper in system

» and often confounded by system complexity
– must map symptoms to root causes to locate problems!

• Dependency models provide an invaluable aid 
to root-cause analysis
– capture connections between high- and low-level 

system components
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Dependency models in a nutshell
• Use a graph (DAG) structure to capture 
dependencies between system components
– if failure of A affects B, then B depends on A
– edge weights represent dependency strengths
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Constructing dependency models
• For effective diagnosis, model must capture:

– static dependencies
– dynamic runtime dependencies 

» e.g., dependencies induced by runtime queries
– distributed dependencies
– dependency strengths
– all at the detailed level of individual system resources

• Most existing techniques don’t meet these 
challenges...
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Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD

• Conclusions and future directions
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Discovering dependencies
• Desired properties of approach

– identifies dynamic, runtime dependencies 
– works on distributed systems
– works with only black-box view of system components
– provides direct evidence of causality
– detects dependencies only visible in failure situations

• These properties inspire an indirect, active 
approach
– indirect: no explicit modeling of system
– active: perturb system to elucidate dependencies
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Active Dependency Discovery (ADD)
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2) Systematically perturb components
1) Instrument the system and apply workload

3) Measure change in system response
4) Construct dependency model from measurement data
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Benefits of ADD
• Coverage

– no need to rely on problems occurring naturally, as in 
passive approaches

– can guarantee coverage by explicitly controlling 
perturbation

• Causality
– causality easy to establish: perturbation is the cause

• Simplicity
– no application modeling or modification necessary
– existing endpoint instrumentation may be sufficient
– no complex data mining required
– applied before real problems occur
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Drawbacks of ADD
• Invasiveness

– can be tricky to do perturbation on production system
– possible solutions:

» leverage redundancy if available (e.g., cluster system)
» run perturbation during non-production periods 

(initial system setup or during scheduled downtime)
» develop low-grade perturbation techniques

• Workload-specific
– extracted models only valid for applied workload
– but, can model components of workload and recombine 

later
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Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD
– approach
– TPC-W testbed environment
– results

• Conclusions and future directions
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Validation: e-commerce case study
• Goal: use ADD to discover dependencies in a 
multi-tier e-commerce environment
– using off-the-shelf black-box software
– in a realistic environment with realistic workload

• Task: discover dependencies of user web 
requests on database tables
– for each type of user request:

» extract dependencies on individual database tables
» characterize strengths of those dependencies
» hand-verify model against application source code

• Platform: TPC-W benchmark app & workload
– realistic mockup of online bookseller e-commerce site
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TPC-W experimental testbed
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User Requests
type1 type2 type14. . .

Database Tables
tbl1 tbl2 tbl10. . .

w1

w2 w3

Web Client
UWisc TPC-W RBE

Web Server
Microsoft IIS 5.0

App. Server
Apache Jakarta/Tomcat 3.1
w/UWisc TPC-W servlets

Database
IBM DB2 7.1 Enterprise DB

content

static
content

AJP

JDBC

HTTP

m
ac

hi
ne

1
m

ac
hi

ne
2

m
ac

hi
ne

3



Slide 13

Perturbation and measurement
• Perturbation applied to individual DB tables

– use DB2’s lock manager to exclusive-lock a table
– configurable “duty cycle” of lock out

» queries locked out for first x% of every 4 sec. interval
– only affects one table; no impact on overall load
– can simultaneously perturb multiple tables

• Per-request response time measured by 
TPC-W front-end user emulator
– 14 different types/classes of requests
– response time is end-to-end, including network delay
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Raw perturbation results
• Ex: Search request, ITEM table perturbed
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Raw perturbation results (2)
• Ex: Search request, CC_XACTS table perturbed
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Applying a linear model
• Linear regression on mean of log of data

– statistically positive slope gives dependency strength
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Summary of results
• Modeling correctly identified 41 of 42 true 
dependencies at 95% confidence level 
– compare to 140 potential dependencies (!)
– one false negative most likely due to insufficient data
– caveat: some glitches due to unmodeled interactions

» manifested as small negative dependency strengths
» solution: improve model or simply discard negative 

strengths



Slide 18

Summary of results (2)
• Tabular representation of full dependency set:

adm
cnf

adm
req

bestsell
buyconf
buyreq

custreg
hom

e
newprod
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proddet
srchreq
srchres

shopcart

ADDRESS X X X
AUTHOR X X X X X X
CC_XACTS X X
COUNTRY X X X
CUSTOMER X X X X
ITEM X X X X X X X X X X X X
ORDER_LINE - X X X
ORDERS X X X X
SHOP_CART X
SHOP_CART_L X X X

Strengths: X = (0,1] X = (1,2] X = (2,3] X = (3,4]

Table
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Using dependencies for diagnosis
• When a problem occurs:

1) identify faulty request 
» from problem report, SLA violation, test requests, ...

2) select the appropriate column in dependency table
3) select the rows representing dependencies

» this is the set of potential root causes
4) investigate potential root causes, starting with

those of highest weight



Slide 20

Using dependencies for diagnosis (2)
• Can extend approach to multiple system levels

– compute one dependency matrix per level
– iterate levels from user symptoms to culprit resource

• This process may not uniquely identify problem
– but can narrow down the culprits via combinations

» isolating the effects of individual tables
» e.g., SHOP_CART_L “=” orderdisp - buyconf

– not all tables can be uniquely isolated
» but could do so by adding synthetic test requests?
» ideal is to build a basis for the whole-system 

dependency matrix
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Outline
• Motivation & background

• ADD: Active Dependency Discovery

• Experimental validation of ADD

• Conclusions and future directions
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Conclusions and future directions
• Dependency models help problem determination

• ADD effectively discovers dependency models
– approach is uniquely positioned in the design space

» active, indirect approach finds dynamic, distributed 
dependencies; works on black-box systems

– initial experimental results are promising
» very good success on TPC-W experiments

• Future directions
– techniques to integrate ADD into production systems
– investigation of end-to-end vs. layer-by-layer tradeoffs
– using dependency models for other management tasks

» impact analysis, performance optimization, ...
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An Active Approach to 
Characterizing Dynamic Dependencies 

for Problem Determination

For more information:
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http://www.research.ibm.com/sysman
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End
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Backup slides
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Dependencies & root-cause analysis
• There are good algorithms for root-cause 
analysis using dependency data
– event correlation [Yemini96, Choi99, Gruschke98, ...]
– systematic probing via graph-traversal [Kätker95]

• But...they assume dependencies are identified 
manually!
– impractical in modern systems at any interesting level 

of detail
– need automatic discovery of fine-grained dependency 

models to solve practical problems
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A motivating example...
• E-commerce system with cluster database

My Web Application

IBM WebSphere 3.02

This level of detail is called a “structural” model
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What’s really needed?
• Dynamic, operational dependency graphs

– based on runtime behavior, not static analysis
– computed for each type of user transaction/action

» each transaction’s graph is a subgraph of the overall 
system dependency graph

– dependencies weighted by “strength” and 
parameterized by workload

IBM WebSphere +
myWebStorefront

IBM DB2 EEE cluster
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How is this useful?
• Helps restrict search space for root cause of 
a problem
– presence/absence of operational dependencies tells 

you where you must look
– dependency strengths may optimize search
– in most cases, cannot completely identify root cause

• Aids in system optimization
– dependency strengths reflect balance of system

• Supports “impact analysis”
– strength of dependency is a direct measure of failure 

impact of a particular component
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Dependency discovery: approaches
• Direct

– relies on human to analytically compute dependencies
» from app-specific knowledge, configuration files, ...

– impractical for realistic systems
• Indirect

– based on instrumentation and monitoring
– correlates observed failures/degradations across 

components
– typically passive

» no perturbation to system beyond instrumentation
– examples: data mining, event correlation, neural-net 

dependency discovery, MPP bottleneck detection
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Challenges of an indirect approach
1) Causality

– most indirect approaches identify only correlation
2) Coverage

– passive approaches only find dependencies that are 
activated while the system is monitored 

– can miss important dependencies that only appear in 
rare failure modes

» but these are often the most important dependencies!

• Solution: an active indirect approach
– directly perturb the system, establishing causality 

and increasing coverage
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Testbed web application
• TPC-W web commerce application

– standardized TPC benchmark
– simulates activities of a “business-oriented 

transactional web server”
– implements storefront of an Internet book seller
– includes user sessions, shopping carts, browsing, 

search, online ordering, “best sellers”, ...
– includes workload specification and generator

» fully parameterized
» standard mixes to simulate users that are mostly-

browsing, mostly-ordering, or shopping (mix)

– implementation in Java from University of Wisconsin
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Dependency view: TPC-W testbed

TPC-W RBE

Apache Jakarta/
Tomcat 3.1

IBM JVM 1.1.8

Client

Microsoft IIS 5.0

m2
Win2000

m1
AIX 4.3.3

m3
AIX 4.3.3

DB2 7.1

TPC-W-UWjava
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Experiment details
• Workload

– 90 simulated users
– TPC-W standard “shopping” mix
– an average of 11.8 unperturbed transactions/sec
– servers not saturated by this workload

• Perturbation
– only one table perturbed at a time
– 0%, 25%, 50%, 75%, 99% levels for each table
– 30 minutes of perturbation at each level
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Limitations of the test case
• Constant workload

– can’t parameterize dependencies by workload
• Independent table perturbation

– can’t include interaction terms in model
• End-to-end performance metric

– OK here since we’re only looking at one level of system
– assumes perturbations don’t have additional effects 

beyond the database
– if the dependency is not manifested in performance, 

it won’t be detected
• None of these limitations are inherent
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Modeling details
• Simple first-order linear model:

– assumes constant effects, independence, and linearity 
of perturbation (under transform of m)

– let mi be some metric for transaction type i
– let µi be the mean non-perturbed value of mi
– let Pj be the level of perturbation of system element j
– then:

ri = µi + Σj (αj Pj) + ε

– the αj‘s are fit to the data, and represent the effects 
of perturbation of the components j

» αj characterizes the strength of mi’s dependency on j 
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Model details
• Fit a first-order linear model:

ri = µi + Σj (αj Pj) + ε

• Estimated effects (αj) for buy request txn:
ITEM: 3.31 ± .26 SHOP_CART: 0.06 ± .26
ADDRESS: 2.49 ± .26 CC_XACTS: 0.06 ± .26
CUSTOMER: 2.41 ± .26 AUTHOR: 0.03 ± .26
SHOP_CART_LINE: 2.35 ± .26 ORDER_LINE: 0.003 ± .26
COUNTRY: 1.98 ± .26 ORDER:          -0.02 ± .26

• Despite simplicity, models fit well
– R2 ranges from .906 to .996, with mean .973
– there are clearly higher-order effects present

» especially noticeable in significant negative effects
» but first-order effects dominate
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Existing approaches
• Most popular approaches are passive

– event collection and data mining
– neural-network-based dependency discovery
– performance bottleneck detection in parallel 

programs
– network fault detection
– nuclear power plant problem diagnosis

• Passive approaches have two main weaknesses: 
– hard to differentiate correlation and causation
– hard to get coverage of all problem/failure cases

• Active approaches limited to postmortems
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A less-linear result
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• Not nearly as linear, but linear model still sufficient
• Example data: order confirmation transaction
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