
Slide 1

Recovery-Oriented Computing
Dave Patterson and Aaron Brown

University of California at Berkeley
{patterson,abrown}@cs.berkeley.edu

In cooperation with
Armando Fox, Stanford University

fox@cs.stanford.edu

http://roc.CS.Berkeley.EDU/

October 2001

Slide 2

Outline
• The past: where we have been

• The present: new realities and challenges

• The future: Recovery-Oriented Computing (ROC)

• ROC techniques and principles

Slide 3

The past: goals and assumptions
of last 15 years

• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Assumptions

– Humans are perfect (they don’t make mistakes during
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free
(good programmers write bug-free code, debugging
works)

– Hardware MTBF is already very large (~100 years
between failures), and will continue to increase

Slide 4

Today, after 15 years of
improving performance

• Availability is now the vital metric for servers
– near-100% availability is becoming mandatory

» for e-commerce, enterprise apps, online services, ISPs
– but, service outages are frequent

» 65% of IT managers report that their websites were
unavailable to customers over a 6-month period

• 25%: 3 or more outages
– outage costs are high

» social effects: negative press, loss of customers who
“click over” to competitor

Source: InternetWeek 4/3/2000

Slide 5

Downtime Costs (per Hour)
• Brokerage operations $6,450,000
• Credit card authorization $2,600,000
• Ebay (1 outage 22 hours) $225,000
• Amazon.com $180,000
• Package shipping services $150,000
• Home shopping channel $113,000
• Catalog sales center $90,000
• Airline reservation center $89,000
• Cellular service activation $41,000
• On-line network fees $25,000
• ATM service fees $14,000

Sources: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel 2000, p.8.
”...based on a survey done by Contingency Planning Research."

Slide 6

What have we learned from past
projects?

• Maintenance of machines (with state) expensive
– ~5X to 10X cost of HW
– Stateless machines can be trivial to maintain (Hotmail)

• System admin primarily keeps system available
– System + clever human working during failure = uptime
– Also plan for growth, software upgrades, configuration,

fix performance bugs, do backup
• Know how evaluate (performance and cost)

– Run system against workload, measure, innovate, repeat
– Benchmarks standardize workloads, lead to competition,

evaluate alternatives; turns debates into numbers
• What are the new challenges? Says who?

Slide 7

Jim Gray: Trouble-Free Systems
• Manager

– Sets goals
– Sets policy
– Sets budget
– System does the rest.

• Everyone is a CIO
(Chief Information Officer)

• Build a system
– Used by millions of people each day
– Administered and managed by a ½ time person.

» On hardware fault, order replacement part
» On overload, order additional equipment
» Upgrade hardware and software automatically.

“What Next?
A dozen remaining IT problems”

Turing Award Lecture,
FCRC,

May 1999
Jim Gray
Microsoft

Slide 8

Butler Lampson: Systems Challenges
• Systems that work

– Meeting their specs
– Always available
– Adapting to changing environment
– Evolving while they run
– Made from unreliable components
– Growing without practical limit

• Credible simulations or analysis
• Writing good specs
• Testing
• Performance

– Understanding when it doesn’t matter

“Computer Systems Research
-Past and Future”
Keynote address,

17th SOSP,
Dec. 1999

Butler Lampson
Microsoft

Slide 9

John Hennessy: What Should the
“New World” Focus Be?

• Availability
– Both appliance & service

• Maintainability
– Two functions:

» Enhancing availability by preventing failure
» Ease of SW and HW upgrades

• Scalability
– Especially of service

• Cost
– per device and per service transaction

• Performance
– Remains important, but its not SPECint

“Back to the Future:
Time to Return to Longstanding

Problems in Computer Systems?”
Keynote address,

FCRC,
May 1999

John Hennessy
Stanford

Slide 10

Charlie Bell, Amazon.com (Monday)
• Goals of Internet commerce system design:

– Support Change: rapid innovation
» “each service can be updated every few days”

– Unconstrained scalability
– Always-on availability
– Latency for outliers is the performance metric

Slide 11

Common goals: ACME
• Availability

– 24x7 delivery of service to users
• Change

– support rapid deployment of new software, apps, UI
• Maintainability

– reduce burden on system administrators
– provide helpful, forgiving sysadmin environments

• Evolutionary Growth
– allow easy system expansion over time without

sacrificing availability or maintainability

Slide 12

Where does ACME stand today?
• Availability: failures are common

– Traditional fault-tolerance doesn’t solve the problems
• Change

– In back-end system tiers, software upgrades
difficult, failure-prone, or ignored

– For application service over WWW, daily change
• Maintainability

– human operator error is single largest failure source
– system maintenance environments are unforgiving

• Evolutionary growth
– 1U-PC cluster front-ends scale, evolve well
– back-end scalability still limited

Slide 13

ACME: Availability
• Availability: failures are common

– Well designed and manufactured HW: >1% fail/year
– Well designed and tested SW: > 1 bug / 1000 lines
– Well trained people doing difficult tasks: up to 10%
– Well run co-location site (e.g., Exodus):

1 power failure per year, 1 network outage per year
– Denial of service attacks => routine event

Slide 14

ACME: What about claims of 5 9s?
• 99.999% availability from telephone company?

– AT&T switches < 2 hours of failure in 40 years
• Cisco, HP, Microsoft, Sun … claim 99.999%

availability claims (5 minutes down / year) in
marketing/advertising
– HP-9000 server HW and HP-UX OS can deliver
99.999% availability guarantee “in certain pre-
defined, pre-tested customer environments”

– Environmental? Application? Operator?

5 9s from Jim Gray’s talk:
“Dependability

in the Internet Era”

Slide 15

ACME: What is uptime of HP.com?

• Average reboot is about 30.8 days;
if 10 minutes per reboot => 99.9% uptime
– See uptime.netcraft.com/up/graph?site=www.hp.com

Slide 16

“Microsoft fingers technicians for
crippling site outages”
By Robert Lemos and Melanie Austria Farmer, ZDNet News, January 25, 2001

• Microsoft blamed its own technicians for a
crucial error that crippled the software giant's
connection to the Internet, almost completely
blocking access to its major Web sites for nearly
24 hours… a "router configuration error" had
caused requests for access to the company’s
Web sites to go unanswered…

• "This was an operational error and not the result
of any issue with Microsoft or third-party
products, nor with the security of our networks,"
a Microsoft spokesman said.

• (5 9s possible if site stays up 300 years!)

Slide 17

ACME: Lessons about human
operators

• Human error is largest single failure source
– HP HA labs: human error is #1 cause of failures (2001)
– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

53%

18%

18%
10%

Slide 18

ACME: Learning from other fields:
PSTN

• Causes of telephone network outages
– from FCC records, 1992-1994
Number of Outages

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure
Number customers x

– half of outages, outage-minutes are human-related
» about 25% are direct result of maintenance errors by

phone company workers
Source: Kuhn, IEEE Computer 30(4), 1997.

Slide 19

ACME: Trends in Customer Minutes
1992-94 vs. 2001

60314Overload
35Vandalism

1215Software
4949Hardware

75100
Human
Error:

External

17698
Human
Error:

Company

20011992-94
TrendCause Minutes Minutes (millions of customer minutes/month)

Slide 20

ACME: Learning from other fields:
human error

• Two kinds of human error
1) slips/lapses: errors in execution
2) mistakes: errors in planning
– errors can be active (operator error) or
latent (design error, management error)

• Human errors are inevitable
– “humans are furious pattern-matchers”

» sometimes the match is wrong
– cognitive strain leads brain to think up least-effort

solutions first, even if wrong
• Humans can self-detect errors

– about 75% of errors are immediately detected
Source: J. Reason, Human Error, Cambridge, 1990.

Slide 21

ACME: The Automation Irony
• Automation does not cure human error

– automation addresses the easy tasks, leaving the
complex, unfamiliar tasks for the human

» humans are ill-suited to these tasks, especially under
stress

– automation hinders understanding and mental
modeling

» decreases system visibility and increases complexity
» operators don’t get hands-on control experience
» prevents building rules and models for troubleshooting

– automation shifts the error source from operator
errors to design errors

» harder to detect/tolerate/fix design errors

Slide 22

ACME: Learning from other fields:
disasters

Common threads in accidents ~3 Mile Island
1.More multiple failures than you believe

possible, because latent errors accumulate
2. Operators cannot fully understand system

because errors in implementation,
measurement system, warning systems.
Also complex, hard to predict interactions

3.Tendency to blame operators afterwards (60-80%),
but they must operate with missing, wrong information

4.The systems are never all working fully properly:
bad warning lights, sensors out, things in repair

5.Emergency Systems are often flawed. At 3 Mile
Island, 2 valves left in the wrong position; parts of a
redundant system used only in an emergency.

Facility running under normal operation masks
errors in error handling

Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990

Slide 23

Summary: the present
• After 15 years of working on performance,
we need new and relevant goals
– ACME: Availability, Change, Maintainability,

Evolutionary growth
• Challenges in achieving ACME:

– Software in Internet services evolves rapidly
– Hardware and software failures are inevitable
– Human operator errors are inevitable

» Automation Irony tells us that we can’t eliminate human
– Test the emergency systems, remove latent errors
– Traditional high-availability/fault-tolerance

techniques don’t solve the problem

Slide 24

Outline
• The past: where we have been

• The present: new realities and challenges

• The future: Recovery-Oriented Computing (ROC)

• ROC techniques and principles

Slide 25

Recovery-Oriented Computing
Philosophy

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres
• Failures are a fact, and
recovery/repair is how we cope with them

• Improving recovery/repair improves availability
– UnAvailability = MTTR

MTTF
– 1/10th MTTR just as valuable as 10X MTBF

(assuming MTTR much less than MTTF)

• Since major Sys Admin job is recovery after
failure, ROC also helps with maintenance

• If necessary, start with clean slate, sacrifice
disk space and performance for ACME

Slide 26

Improving MTTR: approaches
• Repair/recovery has 3 task components:

1) Detecting a problem
2) Diagnosing the root cause of the problem
3) Repairing the problem

• Two approaches to speeding up these tasks:
1) automate the entire process as a unit

» the goal of most research into “self-healing”, “self-
maintaining”, “self-tuning”, or more recently
“introspective” or “autonomic” systems
see http://www.research.ibm.com/autonomic/

2) ROC approach: provide tools to let human sysadmins
carry out the three steps more effectively

» if desired, add automation as a layer on top of the tools

Slide 27

A science fiction analogy
• Autonomic approach • ROC approach

• Suffers from effects of
the Automation Irony

– system is opaque to humans
– only solution to unanticipated

failure is to pull the plug?

• 24th-century engineer is
like today’s sysadmin

– a human diagnoses & repairs
computer problems

– aided by diagnostic tools and
understanding of system

HAL 9000 (2001) Enterprise computer (2365)

Slide 28

Building human-aware recovery tools
• Provide a safe, forgiving space for operator

– Expect human error and tolerate it
» protect system data from human error
» allow mistakes to be easily reversed

– Allow human operator to learn naturally
» “mistakes are OK”: design to encourage exploration,

experimentation
– Make training on real system an everyday process

• Match interfaces to human capabilities
• Automate tedious or difficult tasks, but retain
manual procedures
– encourage periodic use of manual procedures to

increase familiarity

Slide 29

The Key to Human-Aware Recovery:
Repairing the Past

• Major goal of ROC is to provide an Undo for
system administration
– to create an environment that forgives operator error
– to let sysadmins fix latent errors even after they’re

manifested
» this is no ordinary word processor undo!

• The Three R’s: undo meets time travel
– Rewind: roll system state backwards in time
– Repair: fix latent or active error

» automatically or via human intervention
– Redo: roll system state forward, replaying user

interactions lost during rewind

Slide 30

Repairing the Past (2)
• 3 cases needing Undo

– reverse the effects of a mistyped command (rm –rf *)
– roll back a software upgrade without losing user data
– “go back in time” to retroactively install virus filter on

email server; effects of virus are squashed on redo
• The 3 R’s vs. checkpointing, reboot, logging

– checkpointing gives Rewind only
– reboot may give Repair, but only for “Heisenbugs”
– logging can give all 3 R’s

» but need more than RDBMS logging, since system state
changes are interdependent and non-transactional

» 3R-logging requires careful dependency tracking, and
attention to state granularity and externalized events

Slide 31

Tools for Recovery #1: Detection
• System enables input insertion, output check
of all modules (including fault insertion)
– To check module sanity to find failures faster
– To test correctness of recovery mechanisms

» insert (random) faults and known-incorrect inputs
» also enables availability benchmarks

– To expose & remove latent errors from system
– To train/expand experience of operator

» Periodic reports to management on skills
– To discover if warning systems are broken

Slide 32

Tools for Recovery #2: Diagnosis
• System assists human in diagnosing problems

– Root-cause analysis to suggest possible failure points
» Track resource dependencies of all requests
» Correlate symptomatic requests with component

dependency model to isolate culprit components
– “health” reporting to detect failed/failing components

» Failure information, self-test results propagated
upwards

– Don’t rely on things connected according to plans
» Example: Discovery of network, power topology

Slide 33

ROC Enabler: isolation & redundancy
• System is Partitionable

– To isolate faults
– To enable online repair/recovery
– To enable online HW growth/SW upgrade
– To enable operator training/expand experience on

portions of real system
– Techniques: Geographically replicated sites, Virtual

Machine Monitors
• System is Redundant

– Sufficient HW redundancy/Data replication => part of
system down but satisfactory service still available

– Enough to survive 2nd (nth?) failure during recovery
– Techniques: RAID-6, N-copies of data

Slide 34

ROC Enabler: ACME benchmarks
• Traditional benchmarks focus on performance

– ignore ACME goals
– assume perfect hardware, software, human operators

• New benchmarks needed to drive progress
toward ACME, evaluate ROC success
– for example, availability and recovery benchmarks
– How else convince developers, customers to adopt new

technology?

Slide 35

Availability benchmarking 101
• Availability benchmarks quantify system
behavior under failures, maintenance, recovery

• They require
– a realistic workload for the system
– quality of service metrics and tools to measure them
– fault-injection to simulate failures
– human operators to perform repairs

Time

Q
oS

 M
et

ric

0
Repair Time

QoS degradationfailure

normal behavior
(99% conf.)

Slide 36

Availability Benchmarking Environment
• Fault workload

– must accurately reflect failure modes of real-world
Internet service environments

» plus random tests to increase coverage, simulate
Heisenbugs

– but, no existing public failure dataset
» we have to collect this data
» a challenge due to proprietary nature of data

– major contribution will be to collect, anonymize, and
publish a modern set of failure data

• Fault injection harness
– build into system: needed anyway for online

verification

Slide 37

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of

vulnerability to second fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: does not auto-reconstruct!

Linux

Solaris

Example: single-fault in SW RAID

Slide 38

Software RAID: QoS behavior
• Response to double-fault scenario

– a double fault results in unrecoverable loss of data on
the RAID volume

– Linux: blocked access to volume
– Windows: blocked access to volume
– Solaris: silently continued using volume, delivering

fabricated data to application!
» clear violation of RAID availability semantics
» resulted in corrupted file system and garbage data at

the application level
» this undocumented policy has serious availability

implications for applications

Slide 39

Example results: OLTP database
• Setup

– 3-tier: Microsoft SQLServer/COM+/IIS & bus. logic
– TPC-C-like workload; faults injected into DB data & log

• Results
– Middleware highly unstable: degrades or crashes when

DBMS fails or undergoes lengthy recovery

Time (minutes)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
, t

xn
/m

in

0

20

40

60

80

100

120

140

Successful txns
Failed txns

fault

Disk hang during write to data disk

Time (minutes)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
, t

xn
/m

in

0

20

40

60

80

100

120

140

Successful txns
Failed txns

sticky uncorrectable write error, log disk

middleware causes
degraded performance

database
recovers

database fails,
middleware degrades

middleware
crashes

Slide 40

Summary: from ROC to ACME
• ROC: a new foundation to reduce MTTR

– Cope with fact that people, SW, HW fail (Peres’s Law)
» the reality of fast-changing Internet services

– Three R’s to undo failures, bad repairs, fix the past
– Human-focused designs to avoid Automation Irony and

HAL-9000 effect, but still allow future automation
– Self-verification to detect problems and latent errors
– Diagnostics and root cause analysis to give ranking to

potential solutions to problems
– Recovery benchmarks to evaluate MTTR innovations

• Significantly reducing MTTR (people/SW/HW)
=> Significantly increased availability
+ Significantly improved maintenance costs

Slide 41

Interested in ROCing?
• Especially interested in collecting data on how
real systems fail; let us know if you’d be willing
to anonymously share data

• Also other ways for industrial participation
• See http://ROC.cs.berkeley.edu
• Contact Dave Patterson (patterson@cs.berkeley.edu)

or Aaron Brown (abrown@cs.berkeley.edu)

http://roc.cs.berkeley.edu/
http://roc.cs.berkeley.edu/
mailto:patterson@cs.berkeley.edu
mailto:abrown@cs.berkeley.edu

Slide 42

BACKUP SLIDES

Slide 43

Evaluating ROC: human aspects
• Must include humans in availability benchmarks

– to verify effectiveness of undo, training, diagnostics
– humans act as system administrators

• Subjects should be admin-savvy
– system administrators
– CS graduate students

• Challenge will be compressing timescale
– i.e., for evaluating training

• We have some experience with these trials
– earlier work in maintainability benchmarks used 5-

person pilot study

Slide 44

Example results: software RAID (2)
• Human error rates during repair

– 5 trained subjects repeatedly repairing disk failures

313335Total number of trials
User Error – User Recovered
User Error – Intervention Required
System ignored fatal input
Unsuccessful Repair
Fatal Data Loss

LinuxSolarisWindowsError type

Iteration
1 2 3 4 5 6 7 8 9

N
um

be
r o

f e
rr

or
s

0

1

2

3

Windows
Solaris
Linux

– errors rates do not decline
with experience

» early: mistakes;
later: slips & lapses

» UI has big impact on slips
& lapses

	Recovery-Oriented Computing
	Outline
	The past: goals and assumptions of last 15 years
	Today, after 15 years ofimproving performance
	Downtime Costs (per Hour)
	What have we learned from past projects?
	Jim Gray: Trouble-Free Systems
	Butler Lampson: Systems Challenges
	John Hennessy: What Should the “New World” Focus Be?
	Charlie Bell, Amazon.com (Monday)
	Common goals: ACME
	Where does ACME stand today?
	ACME: Availability
	ACME: What about claims of 5 9s?
	ACME: What is uptime of HP.com?
	“Microsoft fingers technicians for crippling site outages”
	ACME: Lessons about human operators
	ACME: Learning from other fields: PSTN
	ACME: Trends in Customer Minutes 1992-94 vs. 2001
	ACME: Learning from other fields: human error
	ACME: The Automation Irony
	ACME: Learning from other fields: disasters
	Summary: the present
	Outline
	Recovery-Oriented Computing Philosophy
	Improving MTTR: approaches
	A science fiction analogy
	Building human-aware recovery tools
	The Key to Human-Aware Recovery: Repairing the Past
	Repairing the Past (2)
	Tools for Recovery #1: Detection
	Tools for Recovery #2: Diagnosis
	ROC Enabler: isolation & redundancy
	ROC Enabler: ACME benchmarks
	Availability benchmarking 101
	Availability Benchmarking Environment
	Example: single-fault in SW RAID
	Software RAID: QoS behavior
	Example results: OLTP database
	Summary: from ROC to ACME
	Interested in ROCing?
	BACKUP SLIDES
	Evaluating ROC: human aspects
	Example results: software RAID (2)

