
Slide 1

To Err is Human

Aaron Brown and David A. Patterson
Computer Science Division

University of California at Berkeley

First EASY Workshop
1 July 2001



Slide 2

The dependability challenge
• Server system dependability is a big concern

– outages are frequent, especially for Internet services
» 65% of IT managers report that their websites were 

unavailable to customers over a 6-month period
• 25%: 3 or more outages

» EBay: entire site is fully-functioning < 90% of time

– outages costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $   225,000/hr
» Amazon.com: $   180,000/hr
» social effects: negative press, loss of customers who 

“click over” to competitor

Source: InternetWeek 4/3/2000, EBay daily logs (thanks to Patricia Enriquez for data)
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Humans cause failures
• Human error is largest single failure source

– HP HA labs: human error is #1 cause of failures (2001)
– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human 

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993): 
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Humans cause failures (2)
• More data: telephone network failures 

– from FCC records, 1992-1994
Number of Outages  

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure  

– half of outages, outage-minutes are human-related
» about 25% are direct result of maintenance errors by 

phone company workers
Source: Kuhn, IEEE Computer 30(4), 1997.
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Humans cause failures (3)
• Human error rates during maintenance of 
software RAID system
– participants attempt to repair RAID disk failures

» by replacing broken disk and reconstructing data
– each participant repeated task several times
– data aggregated across 5 participants

313335Total number of trials
User Error – User Recovered
User Error – Intervention Required
System ignored fatal input
Unsuccessful Repair
Fatal Data Loss

LinuxSolarisWindowsError type
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Humans cause failures (4)
• Errors occur despite experience:

Iteration
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• Training and familiarity can’t eliminate errors
– mistakes mostly in 1st iterations; rest are slips/lapses

• System design affects error-susceptibility
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Don’t just blame the operator!
• Psychology shows that human errors are 
inevitable [see J. Reason, Human Error, 1990]

– humans prone to slips & lapses even on familiar tasks
» 60% of errors are on “skill-based” automatic tasks

– also prone to mistakes when tasks become difficult
» 30% of errors on “rule-based” reasoning tasks
» 10% of errors on “knowledge-based” tasks that require 

novel reasoning from first principles

• Allowing human error can even be beneficial
– mistakes are a part of trial-and-error reasoning

» trial & error is needed to solve knowledge-based tasks 
• like problem diagnosis and performance tuning

» fear of error can stymie innovation and learning
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What can we do?
• Human error is inevitable, so we can’t avoid it

“If a problem has no solution, it may not be a problem, 
but a fact, not to be solved, but to be coped with over 
time” — Shimon Peres

• We must build dependable systems that can 
cope with human error
– and even encourage it by supporting trial-and-error
– allow operators to learn from their mistakes

• We must build benchmarks that measure 
dependability in the face of human error
– “benchmarks shape a field” and motivate progress
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Dependability benchmarks & humans
• End-to-end dependability benchmarks (“TPC”)

– model: complete system evaluated for availability/QoS
under injected “upset-load”

– goal: measure overall system dependability including 
human component, positive and negative

– approach: involve humans in the benchmark process
» select “best” administrators to participate
» include maintenance, upgrades, repairs in upset-load

– benefits: captures overall human contribution to 
dependability (both positive and negative)

– drawbacks: produces an upper-bound measure; hard to 
identify human contribution to dependability
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Dependability benchmarks (2)
• Dependability microbenchmarks

– model: component(s) tested for susceptibility to upsets
– goal: isolate human component of dependability

» system’s propensity for causing human error
» dependability impact of those errors

– approach: usability experiments involving humans
» participants carry out maintenance tasks and repairs
» evaluate frequency and types of errors made
» evaluate component’s resilience to those errors

– benefits: direct evaluation of human error impact on 
dependability

– drawbacks: ignores positive contribution of humans; 
requires large pool of representative participants
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Human participation in benchmarks
• Our approaches require human participation

– significantly complicates the benchmark process
– hard to get enough trained admins as participants
– makes comparison of systems difficult

• Can we eliminate the human participation?
– end-to-end benchmarks need a human behavior model

» if we had this, we wouldn’t need system administrators!
– microbenchmarks require only a human error model

» but, human errors are inherently system dependent
• function of UI, automation, error susceptibility, ...

» may be possible to build a model for a single system, 
but no generalized benchmark yet

» good place for future research . . .
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Dependable human-operated systems
• Avoiding human error

– automation: reducing human involvement
» SW: self-tuning, no-knobs, adaptive systems, ...
» HW: auto-sparing, configuration, topology discovery, ...
» but beware of automation irony!

– training: increasing familiarity with system
» on-line training on realistic failure scenarios in a 

protected sandbox
– avoidance is only a partial solution

» some human involvement is unavoidable
» any involvement provides opportunity for errors
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The key to dependability?
• Building tolerance for human error

– accept inevitability of human involvement and error
» focus on recovery

– undo: the ultimate recovery mechanism?
» ubiquitous and well-proven in productivity applications
» familiar model for error recovery
» enables trial-and-error interaction patterns

– undo for system maintenance
» “time-travel” for system state
» must encompass all hard state, including hardware & 

network configuration
» must be flexible, low-overhead, and transparent to end 

user of system
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Conclusions
• Humans are critical to system dependability

– human error is the single largest cause of failures
• Human error is inescapable: “to err is human”

– yet we blame the operator instead of fixing systems
• We must take human error into account when 
building dependable systems
– in our system designs, by providing tolerance through 

mechanisms like undo
– in our dependability evaluations, by including a human 

component in dependability benchmarks
• The time is ripe for human error research!

– the key to the next significant dependability advance?
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To Err is Human

For more information:
{abrown,patterson}@cs.berkeley.edu

http://roc.cs.berkeley.edu
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Backup slides
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Recovery from human error
• ROC principle: recovery from human error, 
not avoidance
– accepts inevitability of errors
– promotes better human-system interaction by 

enabling trial-and-error
» improves other forms of system recovery

• Recovery mechanism: Undo
– ubiquitous and well-proven in productivity applications
– unusual in system maintenance

» primitive versions exist (backup, standby machines, ...)
» but not well-matched to human error or interaction 

patterns
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Undo paradigms
• An effective undo paradigm matches the needs 
of its target environment
– cannot reuse existing undo paradigms for system 

maintenance
• We need a new undo paradigm for maintenance

– plan:
» lay out the design space
» pick a tentative undo paradigm
» carry out experiments to validate the paradigm

• Underlying assumption: service model
– single application
– users access via well-defined network requests
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Issue #1: Choice of undo model
• Undo model defines the view of past history
• Spectrum of model options:
simplicity flexibility
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linear

undo/redo
branching
undo/redo
w/deletion

single
undo

single
undo/redo

multiple
linear undo

linearized
branching
undo/redo

branching
undo/redo

MS Office emacs

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?
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• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?

• Tentative choice for 
maintenance undo

multiple
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undo/redo
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single
undo

single
undo/redo

multiple
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More undo issues
2) Representation

– does undo act on states or actions?
– how are the states/actions named?

3) Selection of undo points
– granularity: 

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

2) Representation
– does undo act on states or actions?
– how are the states/actions named? TBD

3) Selection of undo points
– granularity:

» undo points at each state change/action?  
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

• Tentative maintenance undo choices in red
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More undo issues (2)
4) Scope of undo

– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

4) Scope of undo
– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

– tentative maintenance undo goals in red
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More undo issues (3)
5) Transparency to service user

– ideally:
» undo of system state preserves user data & updates
» user always sees consistent, forward-moving timeline
» undo has no user-visible impact on data or service  

availability
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Context: other undo mechanisms
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Implementing maintenance undo
• Saving state: disk

– apply snapshot or logging techniques to disk state
» e.g., NetApp- or VMware-style block snapshots, or LFS
» all state, including OS, application binaries, config files

– leverage excess of cheap, fast storage
– integrate “time travel” with native storage mechanism 

for efficiency

• Saving state: hardware
– periodically discover and log hardware configuration
– can’t automatically undo all hardware changes, but can 

direct administrator to restore configuration
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Implementing maintenance undo (2)
• Providing transparency

– queue & log user requests at edge of system, in format 
of original request protocol

– correlate undo points to points in request log
– snoop/replay log to satisfy user requests during undo

time --->

... <--- user requestsR
E
Q

R
E
Q

R
E
Q

u current (real)
time

undo
invokedsystem

logical time

• An undo UI
– should visually display branching structure
– must provide way to name and select undo points, 

show changes between points
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Status and plans
• Status

– starting human experiments to pin down undo paradigm
» subjects are asked to configure and upgrade a 3-tier 

e-commerce system using HOWTO-style documentation
» we monitor their mistakes and identify where and how 

undo would be useful
– experiments also used to evaluate existing undo 

mechanisms like those in GoBack and VMware
• Plans

– finalize choice of undo paradigm
– build proof-of-concept implementation in Internet 

email service on ROC-1 cluster
– evaluate effectiveness and transparency with further 

experiments
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