
Slide 1

To Err is Human

Aaron Brown and David A. Patterson
Computer Science Division

University of California at Berkeley

First EASY Workshop
1 July 2001

Slide 2

The dependability challenge
• Server system dependability is a big concern

– outages are frequent, especially for Internet services
» 65% of IT managers report that their websites were

unavailable to customers over a 6-month period
• 25%: 3 or more outages

» EBay: entire site is fully-functioning < 90% of time

– outages costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $ 225,000/hr
» Amazon.com: $ 180,000/hr
» social effects: negative press, loss of customers who

“click over” to competitor

Source: InternetWeek 4/3/2000, EBay daily logs (thanks to Patricia Enriquez for data)

Slide 3

Humans cause failures
• Human error is largest single failure source

– HP HA labs: human error is #1 cause of failures (2001)
– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

53%

18%

18%
10%

Sources: Gray86, Murphy95

Slide 4

Humans cause failures (2)
• More data: telephone network failures

– from FCC records, 1992-1994
Number of Outages

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure

– half of outages, outage-minutes are human-related
» about 25% are direct result of maintenance errors by

phone company workers
Source: Kuhn, IEEE Computer 30(4), 1997.

Slide 5

Humans cause failures (3)
• Human error rates during maintenance of
software RAID system
– participants attempt to repair RAID disk failures

» by replacing broken disk and reconstructing data
– each participant repeated task several times
– data aggregated across 5 participants

313335Total number of trials
User Error – User Recovered
User Error – Intervention Required
System ignored fatal input
Unsuccessful Repair
Fatal Data Loss

LinuxSolarisWindowsError type

Slide 6

Humans cause failures (4)
• Errors occur despite experience:

Iteration
1 2 3 4 5 6 7 8 9

N
um

be
r o

f e
rr

or
s

0

1

2

3

Windows
Solaris
Linux

• Training and familiarity can’t eliminate errors
– mistakes mostly in 1st iterations; rest are slips/lapses

• System design affects error-susceptibility

Slide 7

Don’t just blame the operator!
• Psychology shows that human errors are
inevitable [see J. Reason, Human Error, 1990]

– humans prone to slips & lapses even on familiar tasks
» 60% of errors are on “skill-based” automatic tasks

– also prone to mistakes when tasks become difficult
» 30% of errors on “rule-based” reasoning tasks
» 10% of errors on “knowledge-based” tasks that require

novel reasoning from first principles

• Allowing human error can even be beneficial
– mistakes are a part of trial-and-error reasoning

» trial & error is needed to solve knowledge-based tasks
• like problem diagnosis and performance tuning

» fear of error can stymie innovation and learning

Slide 8

What can we do?
• Human error is inevitable, so we can’t avoid it

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over
time” — Shimon Peres

• We must build dependable systems that can
cope with human error
– and even encourage it by supporting trial-and-error
– allow operators to learn from their mistakes

• We must build benchmarks that measure
dependability in the face of human error
– “benchmarks shape a field” and motivate progress

Slide 9

Dependability benchmarks & humans
• End-to-end dependability benchmarks (“TPC”)

– model: complete system evaluated for availability/QoS
under injected “upset-load”

– goal: measure overall system dependability including
human component, positive and negative

– approach: involve humans in the benchmark process
» select “best” administrators to participate
» include maintenance, upgrades, repairs in upset-load

– benefits: captures overall human contribution to
dependability (both positive and negative)

– drawbacks: produces an upper-bound measure; hard to
identify human contribution to dependability

Slide 10

Dependability benchmarks (2)
• Dependability microbenchmarks

– model: component(s) tested for susceptibility to upsets
– goal: isolate human component of dependability

» system’s propensity for causing human error
» dependability impact of those errors

– approach: usability experiments involving humans
» participants carry out maintenance tasks and repairs
» evaluate frequency and types of errors made
» evaluate component’s resilience to those errors

– benefits: direct evaluation of human error impact on
dependability

– drawbacks: ignores positive contribution of humans;
requires large pool of representative participants

Slide 11

Human participation in benchmarks
• Our approaches require human participation

– significantly complicates the benchmark process
– hard to get enough trained admins as participants
– makes comparison of systems difficult

• Can we eliminate the human participation?
– end-to-end benchmarks need a human behavior model

» if we had this, we wouldn’t need system administrators!
– microbenchmarks require only a human error model

» but, human errors are inherently system dependent
• function of UI, automation, error susceptibility, ...

» may be possible to build a model for a single system,
but no generalized benchmark yet

» good place for future research . . .

Slide 12

Dependable human-operated systems
• Avoiding human error

– automation: reducing human involvement
» SW: self-tuning, no-knobs, adaptive systems, ...
» HW: auto-sparing, configuration, topology discovery, ...
» but beware of automation irony!

– training: increasing familiarity with system
» on-line training on realistic failure scenarios in a

protected sandbox
– avoidance is only a partial solution

» some human involvement is unavoidable
» any involvement provides opportunity for errors

Slide 13

The key to dependability?
• Building tolerance for human error

– accept inevitability of human involvement and error
» focus on recovery

– undo: the ultimate recovery mechanism?
» ubiquitous and well-proven in productivity applications
» familiar model for error recovery
» enables trial-and-error interaction patterns

– undo for system maintenance
» “time-travel” for system state
» must encompass all hard state, including hardware &

network configuration
» must be flexible, low-overhead, and transparent to end

user of system

Slide 14

Conclusions
• Humans are critical to system dependability

– human error is the single largest cause of failures
• Human error is inescapable: “to err is human”

– yet we blame the operator instead of fixing systems
• We must take human error into account when
building dependable systems
– in our system designs, by providing tolerance through

mechanisms like undo
– in our dependability evaluations, by including a human

component in dependability benchmarks
• The time is ripe for human error research!

– the key to the next significant dependability advance?

Slide 15

To Err is Human

For more information:
{abrown,patterson}@cs.berkeley.edu

http://roc.cs.berkeley.edu

Slide 16

Backup slides

Slide 17

Recovery from human error
• ROC principle: recovery from human error,
not avoidance
– accepts inevitability of errors
– promotes better human-system interaction by

enabling trial-and-error
» improves other forms of system recovery

• Recovery mechanism: Undo
– ubiquitous and well-proven in productivity applications
– unusual in system maintenance

» primitive versions exist (backup, standby machines, ...)
» but not well-matched to human error or interaction

patterns

Slide 18

Undo paradigms
• An effective undo paradigm matches the needs
of its target environment
– cannot reuse existing undo paradigms for system

maintenance
• We need a new undo paradigm for maintenance

– plan:
» lay out the design space
» pick a tentative undo paradigm
» carry out experiments to validate the paradigm

• Underlying assumption: service model
– single application
– users access via well-defined network requests

Slide 19

Issue #1: Choice of undo model
• Undo model defines the view of past history
• Spectrum of model options:
simplicity flexibility

multiple
linear

undo/redo
branching
undo/redo
w/deletion

single
undo

single
undo/redo

multiple
linear undo

linearized
branching
undo/redo

branching
undo/redo

MS Office emacs

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?

54

3

2
10 u

u

• Important choices:
– undo only, or undo/redo?
– single, linear, or branching?
– deletion or no deletion?

• Tentative choice for
maintenance undo

multiple
linear

undo/redo
branching
undo/redo
w/deletion

single
undo

single
undo/redo

multiple
linear undo

linearized
branching
undo/redo

branching
undo/redo

trial-and-error history pattern

Slide 20

More undo issues
2) Representation

– does undo act on states or actions?
– how are the states/actions named?

3) Selection of undo points
– granularity:

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

2) Representation
– does undo act on states or actions?
– how are the states/actions named? TBD

3) Selection of undo points
– granularity:

» undo points at each state change/action?
» or at checkpoints of some granularity?

– are undo points administrator- or system-defined?

• Tentative maintenance undo choices in red

Slide 21

More undo issues (2)
4) Scope of undo

– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

4) Scope of undo
– “what state can be recovered by undo?”
– single-node, multi-node, multi-node+network?
– on each node:

» system hardware state: BIOS, hardware configs?
» disk state: user, application, OS/system?
» soft state: process, OS, full-machine checkpoints?

– tentative maintenance undo goals in red

Slide 22

More undo issues (3)
5) Transparency to service user

– ideally:
» undo of system state preserves user data & updates
» user always sees consistent, forward-moving timeline
» undo has no user-visible impact on data or service

availability

Slide 23

Context: other undo mechanisms

highsingle txn,
app-level

automatic
checkpoints

hybrid,
unnamedsingle undoDBMS logging

(for txn abort)

lowdisk (all),
single server

manual
checkpoints

state,
temporal naming

multiple
linear undo

Netapp
Snapshots

low-
medium

disk (all),
single node

automatic
checkpoints

state,
temporal naming

linearized
branching
undo/redo

GoBack®

lowdisk (1 FS),
single node

manual
checkpoints

state
ad-hoc naming

single or
multiple

linear undo
Tape backup

highentire system
varies; usu.
automatic

checkpoints
state,

unnamedsingle undoGeoplex site
failover

high
all disk & HW,

all nodes &
network

automatic
checkpoints

state,
naming TBD

branching
undo/redo

Desired
maintenance-
undo semantics

Trans-
parencyScopeUndo-point

selectionRepresentationUndo
modelUndo mech.

Design axis

Slide 24

Implementing maintenance undo
• Saving state: disk

– apply snapshot or logging techniques to disk state
» e.g., NetApp- or VMware-style block snapshots, or LFS
» all state, including OS, application binaries, config files

– leverage excess of cheap, fast storage
– integrate “time travel” with native storage mechanism

for efficiency

• Saving state: hardware
– periodically discover and log hardware configuration
– can’t automatically undo all hardware changes, but can

direct administrator to restore configuration

Slide 25

Implementing maintenance undo (2)
• Providing transparency

– queue & log user requests at edge of system, in format
of original request protocol

– correlate undo points to points in request log
– snoop/replay log to satisfy user requests during undo

time --->

... <--- user requestsR
E
Q

R
E
Q

R
E
Q

u current (real)
time

undo
invokedsystem

logical time

• An undo UI
– should visually display branching structure
– must provide way to name and select undo points,

show changes between points

Slide 26

Status and plans
• Status

– starting human experiments to pin down undo paradigm
» subjects are asked to configure and upgrade a 3-tier

e-commerce system using HOWTO-style documentation
» we monitor their mistakes and identify where and how

undo would be useful
– experiments also used to evaluate existing undo

mechanisms like those in GoBack and VMware
• Plans

– finalize choice of undo paradigm
– build proof-of-concept implementation in Internet

email service on ROC-1 cluster
– evaluate effectiveness and transparency with further

experiments

	To Err is Human
	The dependability challenge
	Humans cause failures
	Humans cause failures (2)
	Humans cause failures (3)
	Humans cause failures (4)
	Don’t just blame the operator!
	What can we do?
	Dependability benchmarks & humans
	Dependability benchmarks (2)
	Human participation in benchmarks
	Dependable human-operated systems
	The key to dependability?
	Conclusions
	To Err is Human
	Backup slides
	Recovery from human error
	Undo paradigms
	Issue #1: Choice of undo model
	More undo issues
	More undo issues (2)
	More undo issues (3)
	Context: other undo mechanisms
	Implementing maintenance undo
	Implementing maintenance undo (2)
	Status and plans

