
Recovery Oriented Computing (ROC)

Dave Patterson and a cast of 1000s:
Aaron Brown, Pete Broadwell, George Candea†, Mike Chen,
James Cutler†, Prof. Armando Fox†, Emre Kıcıman†, David

Oppenheimer, and Jonathan Traupman
U.C. Berkeley, †Stanford University

November 2002

Slide 2

Outline
• The past: where we have been

• The present: new realities and challenges

• The future: how will history judge us?

• Alternative future: Recovery-Oriented Computing

• ROC vs. Traditional Fault Tolerance

• ROC principles and quick examples

Slide 3

The past: research goals and
assumptions of last 20 years

• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Simplifying Assumptions

– Humans are perfect (they don’t make mistakes during
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free
(Hire better programmers!)

– Hardware MTBF is already very large (~100 years
between failures), and will continue to increase

– Maintenance costs irrelevant vs. Purchase price
(maintenance a function of price, so cheaper helps)

Slide 4

2000 Downtime Costs (per Hour)
• Brokerage operations $6,450,000
• Credit card authorization $2,600,000
• Ebay (1 outage 22 hours) $225,000
• Amazon.com $180,000
• Package shipping services $150,000
• Home shopping channel $113,000
• Catalog sales center $90,000
• Airline reservation center $89,000
• Cellular service activation $41,000
• On-line network fees $25,000
• ATM service fees $14,000

Sources: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel
2000, p.8. ”...based on a survey done by Contingency Planning Research."

Slide 5

Lost Productivity Ups Outage Cost
• Amazon 2001: Revenue $3.1B, 7744 employees
• Revenue (24x7): $350k per hour
• Employee productivity costs: $250k per hour

– Assuming average annual salary and benefits is
$85,000 and 50 working hours week

• Total Downtime Costs: $600,000 per hour
• Note: Employee cost/hour comparable to

revenue, even for an Internet company

Source: D. Patterson A simple way to estimate the cost of downtime. 16th Systems
Administration Conference, November 2002.

Slide 6

Total Cost of Ownership:
Ownership vs. Purchase

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

Internet Collab. Internet Collab.

HW-SW purchase price
Cost of Ownership

8:1 18:1

4:1

16:1

LinuxLinux Unix

Source: "The Role of Linux in Reducing the Cost of Enterprise Computing“, IDC white paper,
sponsored by Red Hat, by Al Gillen, Dan Kusnetzky, and Scott McLaron, Jan. 2002, available at www.redhat.com

• HW/SW decrease vs. Salary Increase
– 142 sites, 1200-7600 users/site, $2B/yr sales

A B C D

Slide 7

Dependability: Claims of 5 9s?
• 99.999% availability from telephone company?

– AT&T switches < 2 hours of failure in 40 years
• Cisco, HP, Microsoft, Sun … claim 99.999%

availability claims (5 minutes down / year) in
marketing/advertising
– HP-9000 server HW and HP-UX OS can deliver
99.999% availability guarantee “in certain pre-
defined, pre-tested customer environments”

– Environmental? Application? Operator?

5 9s from Jim Gray’s talk:
“Dependability

in the Internet Era”

Slide 8

“Microsoft fingers technicians
for crippling site outages”

By Robert Lemos and Melanie Austria Farmer, ZDNet News, January 25, 2001

• Microsoft blamed its own technicians for a
crucial error that crippled the software giant's
connection to the Internet, almost completely
blocking access to its major Web sites for nearly
24 hours… a "router configuration error" had
caused requests for access to the company’s
Web sites to go unanswered…

• "This was an operational error and not the result
of any issue with Microsoft or third-party
products, nor with the security of our networks,"
a Microsoft spokesman said.

• (5 9s possible if site stays up 250 years!)

Slide 9

Learning from other fields:
disasters

Common threads in accidents ~3 Mile Island
1.More multiple failures than you believe

possible, because latent errors accumulate
2. Operators cannot fully understand system

because errors in implementation,
measurement system, warning systems.
Also complex, hard to predict interactions

3.Tendency to blame operators afterwards (60-80%),
but they must operate with missing, wrong information

4.The systems are never all working fully properly:
bad warning lights, sensors out, things in repair

5.Emergency Systems are often flawed. At 3 Mile
Island, 2 valves in wrong position; parts of a redundant
system used only in an emergency. Facility running
under normal operation masks errors in error handling

Source: Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990

Slide 10

Learning from other fields:
human error

• Two kinds of human error
1) slips/lapses: errors in execution
2) mistakes: errors in planning
– errors can be active (operator error) or
latent (design error, management error)

• Human errors are inevitable
– “humans are furious pattern-matchers”

» sometimes the match is wrong
– cognitive strain leads brain to think up least-effort

solutions first, even if wrong
• Humans can self-detect errors

– about 75% of errors are immediately detected
Source: J. Reason, Human Error, Cambridge, 1990.

Slide 11

Human error
• Human operator error is the leading cause of
dependability problems in many domains

• Operator error cannot be eliminated
– humans inevitably make mistakes: “to err is human”
– automation irony tells us we can’t eliminate the human

Source: D. Patterson et al. Recovery Oriented Computing (ROC): Motivation, Definition, Techniques,
and Case Studies, UC Berkeley Technical Report UCB//CSD-02-1175, March 2002.

59%22%

8%

11%

Operator
Hardware
Software
Overload

51%

15%

34%

0%

Public Switched Telephone Network Average of 3 Internet Sites

Sources of Failure

Slide 12

The ironies of automation
• Automation doesn’t remove human influence

– shifts the burden from operator to designer
» designers are human too, and make mistakes
» unless designer is perfect, human operator still needed

• Automation can make operator’s job harder
– reduces operator’s understanding of the system

» automation increases complexity, decreases visibility
» no opportunity to learn without day-to-day interaction

– uninformed operator still has to solve exceptional
scenarios missed by (imperfect) designers

» exceptional situations are already the most error-prone

• Need tools to help, not replace, operator
Source: J. Reason, Human Error, Cambridge University Press, 1990.

Slide 13

Learning from others: Bridges
• 1800s: 1/4 iron truss railroad
bridges failed!

• Safety is now part of
Civil Engineering DNA

• Techniques invented since 1800s:
– Learn from failures vs. successes
– Redundancy to survive some failures
– Margin of safety 3X-6X vs.
calculated load

– (CS&E version of safety margin?)
• What will people of future think
of our computers?

Slide 14

Margin of Safety in CS&E?
• Like Civil Engineering, never make dependable
systems until add margin of safety (“margin
of ignorance”) for what we don’t (can’t) know?
– Before: design to tolerate expected (HW) faults

• RAID 5 Story
– Operator removing good disk vs. bad disk
– Temperature, vibration causing failure before repair
– In retrospect, suggested RAID 5 for what we

anticipated, but should have suggested RAID 6
(double failure OK) for unanticipated/safety margin?

• CS&S Margin of Safety: Tolerate human
error in design, in construction, and in use?

Slide 15

Where we are today
• MAD TV, “Antiques Roadshow, 3005 AD”

VALTREX:
“Ah ha. You paid 7 million Rubex too much. My
suggestion: beam it directly into the disposal cube.
These pieces of crap crashed and froze so frequently
that people became violent!
Hargh!”

“Worthless Piece of Crap: 0 Rubex”

Slide 16

Outline
• The past: where we have been

• The present: new realities and challenges

• The future: how will history judge us?

• Alternative future: Recovery-Oriented Computing

• ROC vs. Traditional Fault Tolerance

• ROC principles and quick examples

Slide 17

A New Research Manifesto
• Synergy with Humanity

– Build systems that work well with people who operate
them, both end users on client computers and
operators on server computers

• Dependable Systems
– Build systems that world can safely depend upon

• Secure Systems that Protect Privacy
– Need to help make society secure without

compromising privacy of individuals
• ROC project aimed at services at Internet
sites, focus so far on synergy & dependability

Slide 18

Recovery-Oriented Computing
Philosophy

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres (“Peres’s Law”)
• People/HW/SW failures are facts, not problems
• Recovery/repair is how we cope with them
• Improving recovery/repair improves availability

– UnAvailability = MTTR
MTTF

– 1/10th MTTR just as valuable as 10X MTBF

(assuming MTTR much less than MTTF)

• ROC also helps with maintenance/TCO
– since major Sys Admin job is recovery after failure

• Since TCO is 5-10X HW/SW $, if necessary
spend disk/DRAM/CPU resources for recovery

Slide 19

MTTR more valuable than MTTF???
• Threshold => non-linear return on improvement

– 8 to 11 second abandonment threshold on Internet
– 30 second NFS client/server threshold
– Satellite tracking and 10 minute vs. 2 minute MTTR

• Ebay 4 hour outage, 1st major outage in year
– More people in single event worse for reputation?
– One 4-hour outage/year => NY Times => stock?
– What if 1-minute outage/day for a year?

(250X improvement in MTTR, 365X worse in MTTF)
• MTTF normally predicted vs. observed

– Include environmental error operator error, app bug?
– Much easier to verify MTTR than MTTF!

• If 99% to 99.9% availability, no change in prep
– 1-3 months => 10-30 months MTTF, still see failures

Slide 20

Traditional Fault-Tolerance vs.ROC
• >30 years of Fault-Tolerance research

– fewer systems builders involved; ROC is for/by systems builders
• FT greatest success in HW; ignores operator error?

– ROC holistic, all failure sources: HW, SW, and operator
• FT tends to be bottom up, systems/ROC top-down
• Key FT approach: assumes accurate model of hardware

and software, and ways HW and SW can fail
– Models to design, evaluate availability
– Systems/ROC: benchmarks, quantitative evaluation of prototypes

• Success areas for FT: airplanes, satellites, space
shuttle, telecommunications, finance (Tandem)

– Hardware, software often changes slowly
– Where SW/HW changes more rapidly, less impact of FT research

• Much of FT helps MTTF, ROC helps MTTR
– Improving MTTF and MTTR synergistic (don’t want bad MTTF!)

Slide 21

Five “ROC Solid” Principles
1. Given errors occur, design to recover rapidly
2. Given humans make errors, build tools to help

operator find and repair problems
– e.g., undo; hot swap; graceful, gradual SW upgrade

3. Extensive sanity checks during operation
– To discover failures quickly (and to help debug)
– Report to operator (and remotely to developers)

4. Any error message in HW or SW can be routinely
invoked, scripted for regression test
– To test emergency routines during development
– To validate emergency routines in field
– To train operators in field

5. Recovery benchmarks to measure progress
– Recreate performance benchmark competition

Slide 22

Time

Q
oS

 M
et

ric

0

• Recovery benchmarks quantify system behavior
under failures, maintenance, recovery

• They require
– A realistic workload for the system
– Quality of service metrics and tools to measure them
– Fault-injection to simulate failures
– Human operators to perform repairs

Repair Time
QoS degradationfailure

normal behavior
(99% conf.)

Recovery benchmarking 101

Source: A. Brown, and D. Patterson, “Towards availability benchmarks: a case
study of software RAID systems,” Proc. USENIX, 18-23 June 2000

Slide 23

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example: 1 fault in SW RAID

• Compares Linux and Solaris reconstruction
– Linux: Small impact but longer vulnerability to 2nd fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: did not auto-reconstruct!

Linux

Solaris

Slide 24

Recovery Benchmarks (so far)
• Recovery benchmarks involve people, but so do
most research by social scientists
– “Macro” benchmarks for competition, must be fair,

hard to game, representative; use ~ 10 operators in
routine maintenance and observe errors; insert
realistic HW, SW errors stochastically

– “Micro” benchmarks for development, must be cheap;
inject typical human, HW, SW errors; predict Macro

• Many opportunities to compare commercial
products and claims, measure value of
research ideas, … with recovery benchmarks
– Lots of low hanging fruit (~ early RAID days)

Source: D. Oppenheimer, A. Brown, J. Traupman, P. Broadwell, and D. Patterson.
Practical issues in dependability benchmarking. 2nd Workshop on Evaluating and

Architecting System Dependability (EASY), Oct. 2002

Slide 25

Help Operator with Diagnosis?
• System assists human in diagnosing problems

– Root-cause analysis to suggest possible failure points
» Track resource dependencies of all requests
» Correlate symptomatic requests with component

dependency model to isolate culprit components
– “health” reporting to detect failed/failing components

» Failure information, self-test results propagated upwards
– Don’t rely on things connected according to plans

» Example: Discovery of network, power topology
• Example: Pinpoint – modify J2EE to trace
modules used and record success/fail of
trace, then use standard data mining to
discover failed module; 8% overhead, don’t
need model, yet very accurate
Source: Chen, M., E. Kiciman, E. Fratkin, E. Brewer and A. Fox. Pinpoint: Problem

Determination in Large, Dynamic, Internet Services. Proc. Int’l Conf. on
Dependable Systems and Networks, Washington D.C., 2002.

Slide 26

Support Operator Repair?
• Time travel for system operators for high
level commands

• Three R’s for recovery
– Rewind: roll all system state backwards in time
– Repair: change system to prevent failure

» e.g., fix latent error, retry unsuccessful operation, install
preventative patch

– Replay: roll system state forward, replaying end-user
interactions lost during rewind

• All three R’s are critical
– rewind enables undo
– repair lets user/administrator fix problems
– replay preserves updates, propagates fixes forward

Slide 27

Example 3R’s scenarios
• Retroactive repair

– mitigate external attacks
» retroactively install virus/spam filter on email server;

effects are squashed on replay

• Undo spends excess disk capacity to offer
safety margin via time travel => versioning
file system, log of email events, ..

• (Recent) Key Insight: leverage file consistency
research for disconnected users (e.g.,Bayou)
– file systems modified in parallel, later “synced”

Source: A. Brown, and D. A. Patterson. Rewind, Repair, Replay: Three R's to
Dependability. 10th ACM SIGOPS European Workshop,

Saint-Emilion, France, September 2002.

Slide 28

Error Insertion Example?
• Example: FIG - Fault Insertion in Glibc

– <10% overhead in portable library
– finds strange behavior even in mature software when

invoke errors
– Code is available

Source: Broadwell, P., N. Sastry and J. Traupman. FIG: A Prototype Tool for Online
Verification of Recovery Mechanisms. Workshop on Self-Healing, Adaptive and self-

MANaged Systems (SHAMAN), New York, NY, June 2002.

Slide 29

Rapid Recovery via Recursive
Restart?

• “Recursive Recovery” (Candea, Fox) restarts
optimal number of components of system

• Look at dependence chain during recovery to
see if can reorganize to reduce recovery time

• Example: Mercury satellite ground station
– Average 5X reduction in recovery time
– Nonlinear return: fast recovery implies don’t lose

track of satellite during pass vs. greater MTTF

Source: G. Candea and A. Fox, “Recursive Restartability: Turing the Reboot
Sledgehammer into a scalpel,” 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII), May 2001

Slide 30

ROC Status
• Papers that layout philosophy and initial results
for
– Recovery benchmarks
– Failure data collection and analysis
– Error insertion
– Diagnosis without detailed model
– MTTR v. MTTF
– Fast recovery
– Undo design and implementation

• Building Email prototype for operator undo
• Plan on Email system using all ROC techniques,
then benchmark recovery vs. commercial
systems

Slide 31

ROC Summary, Part I
• Need a theory on constructing dependable,
maintainable sites for networked services
– Document best practices of successful sites?

• Need a theory on good design for operators
as well as good design for end users
– Airplane Analogy: user interface to passengers (747)

vs. user interface to pilots (Cessna)
– HCI research opportunity?

• Need new definition of “performability”
– Failure is more than unavailable for 100% of users:

(e.g., available to 10% of users is not “up”)
– Cost of outages to Internet service like cost of

overloads: customers give up, income lost
– Need IT equivalent of PSTN “blocked calls”?

» PSTN switches required to collect blocked calls

Slide 32

Cautionary Tale
• Motivation #1: We should build
dependable, secure systems that are
synergistic with humanity because
computer scientists and engineers are
moral people and we know it’s the right
thing to do

• Motivation #2: Governments will soon
enable litigation against undependable,
insecure products that crash and freeze
so frequently that people become violent

Slide 33

ROC Summary, Part II
• 21st Century Research challenge is Synergy with
Humanity, Dependability, Security/Privacy

• CS&E Margin of Safety: Tolerate Human Error?
• 2002: Peres’s Law greater than Moore’s Law?

– Must cope with fact that people, SW, HW fail
• Recovery Oriented Computing is one path for
operator synergy, dependability for servers
– Failure data collection + Benchmarks to evaluate
– Industry: may soon compete on recovery time v. SPEC
– Undo support, Error Insertion, Sanity Checks, Recursive

Recovery, Diagnosis Aid,
– Significantly reducing MTTR (people/SW/HW)

=> better Dependability & lower Cost of Ownership

Slide 34

Interested in ROCing?
• More research opportunities than 2 university
projects can cover. Many could help with:
– Failure data collection, analysis, and publication
– Create/Run Recovery benchmarks: compare (by vendor)

databases, files systems, routers, …
– Invent, evaluate techniques to reduce MTTR and TCO in

computation, storage, and network systems
– (Lots of low hanging fruit)

“If it’s important,
how can you say it’s impossible if you don’t try?”

Jean Monnet, a founder of European Union

http://ROC.cs.berkeley.edu

Slide 35

BACKUP SLIDES

Slide 36

Recovery Benchmarking Environment
• Fault workload

– Must accurately reflect failure modes of real-world
Internet service environments

» plus random tests to increase coverage, simulate
Heisenbugs

– But, no existing public failure dataset
» we have to collect this data
» a challenge due to proprietary nature of data

– major contribution will be to collect, anonymize, and
publish a modern set of failure data

• Fault injection harness
– build into system: needed anyway for online

verification

Slide 37

Safe, forgiving for operator?
• Expect human error and tolerate it

– protect system data from human error
– allow mistakes to be easily reversed

• Allow human operator to learn naturally
– “mistakes are OK”: design to encourage exploration,

experimentation
• Make training on real system an everyday
process

• Match interfaces to human capabilities
• Automate tedious or difficult tasks,
but retain manual procedures
– Encourage periodic use of manual procedures to

increase familiarity

Slide 38

Automation vs. Aid?
• Two approaches to helping
1) Automate the entire process as a unit

– the goal of most research into “self-healing”,
“self-maintaining”, “self-tuning”, or more recently
“introspective” or “autonomic” systems

– What about Automation Irony?

2) ROC approach: provide tools to let human
SysAdmins perform job more effectively
– If desired, add automation as a layer on top of the

tools
– What about number of SysAdmins as number of

computers continue to increase?

Slide 39

A science fiction analogy
• Full automation • Human-aware automation

• Suffers from effects of
the automation ironies

– system is opaque to humans
– only solution to unanticipated

failure is to pull the plug?

• 24th-century engineer is
like today’s SysAdmin

– a human diagnoses & repairs
computer problems

– automation used in human-
operated diagnostic tools

HAL 9000 (2001)
Enterprise computer (2365)

Slide 40

Challenge #2: externalized state
• The equivalent of the “time travel paradox”

– the 3R cycle alters state that has previously been
seen by an external entity (user or another computer)

– produces inconsistencies between internal and
external views of state after 3R cycle

• Examples
– a formerly-read/forwarded email message is altered
– a failed request is now successful or vice versa
– item availability estimates change in e-commerce,

affecting orders
• No complete fix; solutions just manage the
inconsistency

Slide 41

Externalized state: solutions
• Ignore the inconsistency

– let the (human) user tolerate it
– appropriate where app. already has loose consistency

» e.g., email message ordering, e-commerce stock estimates

• Compensating/explanatory actions
– leave the inconsistency, but explain it to the user
– appropriate where inconsistency causes confusion but

not damage
» e.g., 3R’s delete an externalized email message;

compensating action replaces message with a new message
explaining why the original is gone

» e.g., 3R’s cause an e-commerce order to be cancelled;
compensating action refunds credit card and emails user

Slide 42

Externalized state: solutions (2)
• Expand the boundary of Rewind

– 3R cycle induces rollback of external system as well
» external system reprocesses updated externalized data

– appropriate when externalized state chain is short;
external system is under same administrative domain

» danger of expensive cascading rollbacks; exploitation

• Delay execution of externalizing actions
– allow inconsistency-free undo only within delay window
– appropriate for asynchronous, non-time-critical

events
» e.g., sending mailer-daemon responses in email or

delivering email to external hosts

Slide 43

Availability: Uptime of HP.com?

• Average reboot is about 30.8 days;
if 10 minutes per reboot => 99.9% uptime
– See uptime.netcraft.com/up/graph?site=www.hp.com

Slide 44

Software RAID: QoS behavior
• Response to double-fault scenario

– a double fault results in unrecoverable loss of data on
the RAID volume

– Linux: blocked access to volume
– Windows: blocked access to volume
– Solaris: silently continued using volume, delivering

fabricated data to application!
» clear violation of RAID availability semantics
» resulted in corrupted file system and garbage data at the

application level
» this undocumented policy has serious availability

implications for applications

Slide 45

Partitioning and Redundancy?
• System is Partitionable

– To isolate faults
– To enable online repair/recovery
– To enable online HW growth/SW upgrade
– To enable operator training/expand experience on

portions of real system without fear of system failure
– Techniques: Geographically replicated sites, Virtual

Machine Monitors
• System is Redundant

– Sufficient HW redundancy/Data replication => part of
system down but satisfactory service still available

– Enough to survive 2nd (nth?) failure during recovery
– Techniques: RAID-6, N-copies of data

Slide 46

TCO breakdown (average)
• Administration/Operations

– Adding/deleing users
– Tracking equipment
– Network, Server management
– Backup
– Upgrades, Web site

• Planning/Procurement
– Planning for upgrades
– Buying new, disposing old

• User support
– Help desk
– Desktop troubleshooting

• Database management
– Creating, adjusting, allocating DB

resources

Planning/
Procurement

User
support

Database
management

Administration/
Operations

Source: "The Role of Linux in Reducing the Cost of Enterprise
Computing“, IDC white paper, sponsored by Red Hat, by Al Gillen,
Dan Kusnetzky, and Scott McLaron, Jan. 2002, available at
www.redhat.com

Slide 47

Internet x86/Linux Breakdown
deinstall/disposal desktop sys
Procurement
Admininistration
Web site management
Asset management admin
System backup
Upgrades/moves/adds/changes
Network Management
Planning/Management
Database Management
Operations
User support

Slide 48

Total Cost Own. Hypothesis
• “Moore’s Law” + hypercompetitve marketplace improves

cost and speed of CPUs,
cost and capacity of memory and disks

• Morris (IBM) $3M comparison 1984 v. 2001:
– CPU: Minicomputer to PC, 3000X faster
– DRAM: Memory boards to DIMMs, 3000X bigger
– Disks: 8-inch drives to 3.5-inch drives, 4000X bigger

• Unless avg. user demands grow with Moore’s Law, a
service increases in number of users

• HW/SW costs shrink; salaries go up over time
• Hypothesis: Cost of Ownership is more a function of

number of users versus HW/SW $,
so T.C.O. today is mostly people costs

Slide 49

Outage Report
DateDate

PlacePlace

ExplanationExplanation

Number of Number of
Customers Customers
AffectedAffected

CompanyCompany

TimeTime

DurationDuration

Blocked Blocked
CallsCalls

CauseCause

Slide 50

Failure Data: 3 Internet Sites
• Global storage service site

– ~500 machines, 4 colo. facilities + customer sites
– all service software custom-written (x86/free OS)

• High-traffic Internet site
– ~5000 of machines, 4 collocation facilities
– ~100 million hits/day
– all service software custom-written (x86/free OS)
– Read mostly

• Online services site
– R/W, ~1000 machines, custom SW, Sparc/x86 Solaris

• Looked at trouble tickets over 3-6 months

Source: David Oppenheimer, U.C. Berkeley, in progress.

Slide 51

Geographic distribution, Paired Sites

1. Online service/portal

3. High-traffic Internet site

2. Global storage service

Slide 52

Evaluating ROC:
human aspects

• Must include humans in availability benchmarks
– to verify effectiveness of undo, training, diagnostics
– humans act as system administrators

• Subjects should be admin-savvy
– system administrators
– CS graduate students

• Challenge will be compressing timescale
– i.e., for evaluating training

• We have some experience with these trials
– earlier work in maintainability benchmarks used 5-

person pilot study

Slide 53

ROC Part I: Failure Data
Lessons about human operators
• Human error is largest single failure source

– HP HA labs: human error is #1 cause of failures (2001)
– Oracle: half of DB failures due to human error (1999)
– Gray/Tandem: 42% of failures from human

administrator errors (1986)
– Murphy/Gent study of VAX systems (1993):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1985 1993

Causes of system crashes

Time (1985-1993)

%
 o

f
Sy

st
em

 C
ra

sh
es

System
management

Software
failure

Hardware
failure

Other

53%

18%

18%
10%

Slide 54

Lessons Learned from Other
Cultures

• Code of Hammurabi, 1795-1750 BC, Babylon
– 282 Laws on 8-foot stone monolith

229. If a builder build a house for some one,
and does not construct it properly, and the
house which he built fall in and kill its owner,
then that builder shall be put to death.

230. If it kill the son of the owner the son of
that builder shall be put to death.

232. If it ruin goods, he shall make
compensation for all that has been ruined, and
inasmuch as he did not construct properly this
house which he built and it fell, he shall re-
erect the house from his own means.

• Do we need Babylonian quality standards?

Slide 55

Butler Lampson: Systems Challenges
• Systems that work

– Meeting their specs
– Always available
– Adapting to changing environment
– Evolving while they run
– Made from unreliable components
– Growing without practical limit

• Credible simulations or analysis
• Writing good specs
• Testing
• Performance

– Understanding when it doesn’t matter

“Computer Systems Research
-Past and Future”
Keynote address,

17th SOSP,
Dec. 1999

Butler Lampson
Microsoft

