
Slide 1

Availability and Maintainability
Benchmarks

A Case Study of Software RAID Systems

Aaron Brown, Eric Anderson, and
David A. Patterson

Computer Science Division
University of California at Berkeley

CS294-8 Guest Lecture
7 November 2000

Slide 2

Overview
• Availability and Maintainability are key goals
for modern systems
– and the focus of the ISTORE project

• How do we achieve these goals?
– start by understanding them
– figure out how to measure them
– evaluate existing systems and techniques
– develop new approaches based on what we’ve learned

» and measure them as well!

Slide 3

Overview
• Availability and Maintainability are key goals
for modern systems
– and the focus of the ISTORE project

• How do we achieve these goals?
– start by understanding them
– figure out how to measure them
– evaluate existing systems and techniques
– develop new approaches based on what we’ve learned

» and measure them as well!

• Benchmarks make these tasks possible!

Slide 4

Part I

Availability Benchmarks

Slide 5

Outline: Availability Benchmarks
• Motivation: why benchmark availability?

• Availability benchmarks: a general approach

• Case study: availability of software RAID
– Linux (RH6.0), Solaris (x86), and Windows 2000

• Conclusions

Slide 6

Why benchmark availability?
• System availability is a pressing problem

– modern applications demand near-100% availability
» e-commerce, enterprise apps, online services, ISPs
» at all scales and price points

– we don’t know how to build highly-available systems!
» except at the very high-end

• Few tools exist to provide insight into system
availability
– most existing benchmarks ignore availability

» focus on performance, and under ideal conditions
– no comprehensive, well-defined metrics for availability

Slide 7

Step 1: Availability metrics
• Traditionally, percentage of time system is up

– time-averaged, binary view of system state (up/down)
• This metric is inflexible

– doesn’t capture degraded states
» a non-binary spectrum between “up” and “down”

– time-averaging discards important temporal behavior
» compare 2 systems with 96.7% traditional availability:

• system A is down for 2 seconds per minute
• system B is down for 1 day per month

• Our solution: measure variation in system
quality of service metrics over time

– performance, fault-tolerance, completeness, accuracy

Slide 8

Step 2: Measurement techniques
• Goal: quantify variation in QoS metrics as
events occur that affect system availability

• Leverage existing performance benchmarks
– to measure & trace quality of service metrics
– to generate fair workloads

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and

macro-benchmarks

Slide 9

Step 3: Reporting results

Time

Q
oS

 M
et

ric }normal behavior
(99% conf)

injected
fault system handles fault

0

• Results are most accessible graphically
– plot change in QoS metrics over time
– compare to “normal” behavior

» 99% confidence intervals calculated from no-fault runs

• Graphs can be distilled into numbers

Slide 10

Case study
• Availability of software RAID-5 & web server

– Linux/Apache, Solaris/Apache, Windows 2000/IIS
• Why software RAID?

– well-defined availability guarantees
» RAID-5 volume should tolerate a single disk failure
» reduced performance (degraded mode) after failure
» may automatically rebuild redundancy onto spare disk

– simple system
– easy to inject storage faults

• Why web server?
– an application with measurable QoS metrics that

depend on RAID availability and performance

Slide 11

Benchmark environment
• RAID-5 setup

– 3GB volume, 4 active 1GB disks, 1 hot spare disk
• Workload generator and data collector

– SPECWeb99 web benchmark
» simulates realistic high-volume user load
» mostly static read-only workload
» modified to run continuously and to measure average

hits per second over each 2-minute interval

• QoS metrics measured
– hits per second

» roughly tracks response time in our experiments
– degree of fault tolerance in storage system

Slide 12

Benchmark environment: faults
• Focus on faults in the storage system (disks)

• Emulated disk provides reproducible faults
– a PC that appears as a disk on the SCSI bus
– I/O requests intercepted and reflected to local disk
– fault injection performed by altering SCSI command

processing in the emulation software

• Fault set chosen to match faults observed in
a long-term study of a large storage array
– media errors, hardware errors, parity errors, power

failures, disk hangs/timeouts
– both transient and “sticky” faults

Slide 13

Single-fault experiments
• “Micro-benchmarks”

• Selected 15 fault types
– 8 benign (retry required)
– 2 serious (permanently unrecoverable)
– 5 pathological (power failures and complete hangs)

• An experiment for each type of fault
– only one fault injected per experiment
– no human intervention
– system allowed to continue until stabilized or crashed

Slide 14

Multiple-fault experiments
• “Macro-benchmarks” that require human
intervention

• Scenario 1: reconstruction
(1) disk fails
(2) data is reconstructed onto spare
(3) spare fails
(4) administrator replaces both failed disks
(5) data is reconstructed onto new disks

• Scenario 2: double failure
(1) disk fails
(2) reconstruction starts
(3) administrator accidentally removes active disk
(4) administrator tries to repair damage

Slide 15

Comparison of systems
• Benchmarks revealed significant variation in
failure-handling policy across the 3 systems
– transient error handling
– reconstruction policy
– double-fault handling

• Most of these policies were undocumented
– yet they are critical to understanding the systems’

availability

Slide 16

Transient error handling
• Transient errors are common in large arrays

– example: Berkeley 368-disk Tertiary Disk array, 11mo.
» 368 disks reported transient SCSI errors (100%)
» 13 disks reported transient hardware errors (3.5%)
» 2 disk failures (0.5%)

– isolated transients do not imply disk failures
– but streams of transients indicate failing disks

» both Tertiary Disk failures showed this behavior

• Transient error handling policy is critical in
long-term availability of array

Slide 17

Transient error handling (2)
• Linux is paranoid with respect to transients

– stops using affected disk (and reconstructs) on any
error, transient or not

» fragile: system is more vulnerable to multiple faults
» disk-inefficient: wastes two disks per transient
» but no chance of slowly-failing disk impacting perf.

• Solaris and Windows are more forgiving
– both ignore most benign/transient faults

» robust: less likely to lose data, more disk-efficient
» less likely to catch slowly-failing disks and remove them

• Neither policy is ideal!
– need a hybrid that detects streams of transients

Slide 18

Reconstruction policy
• Reconstruction policy involves an availability
tradeoff between performance & redundancy
– until reconstruction completes, array is vulnerable to

second fault
– disk and CPU bandwidth dedicated to reconstruction

is not available to application
» but reconstruction bandwidth determines

reconstruction speed
– policy must trade off performance availability and

potential data availability

Slide 19

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#a
dd

iti
on

al
 fa

ilu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Reconstruction policy: graphical view

• Visually compare Linux and Solaris reconstruction policies
– clear differences in reconstruction time and perf. impact

Linux

Solaris

Slide 20

Reconstruction policy (2)
• Linux: favors performance over data availability

– automatically-initiated reconstruction, idle bandwidth
– virtually no performance impact on application
– very long window of vulnerability (>1hr for 3GB RAID)

• Solaris: favors data availability over app. perf.
– automatically-initiated reconstruction at high BW
– as much as 34% drop in application performance
– short window of vulnerability (10 minutes for 3GB)

• Windows: favors neither!
– manually-initiated reconstruction at moderate BW
– as much as 18% app. performance drop
– somewhat short window of vulnerability (23 min/3GB)

Slide 21

Double-fault handling
• A double fault results in unrecoverable loss of
some data on the RAID volume

• Linux: blocked access to volume
• Windows: blocked access to volume
• Solaris: silently continued using volume,

delivering fabricated data to application!
– clear violation of RAID availability semantics
– resulted in corrupted file system and garbage data at

the application level
– this undocumented policy has serious availability

implications for applications

Slide 22

Availability Conclusions: Case study
• RAID vendors should expose and document
policies affecting availability
– ideally should be user-adjustable

• Availability benchmarks can provide valuable
insight into availability behavior of systems
– reveal undocumented availability policies
– illustrate impact of specific faults on system behavior

• We believe our approach can be generalized
well beyond RAID and storage systems
– the RAID case study is based on a general

methodology

Slide 23

Conclusions: Availability benchmarks
• Our methodology is best for understanding
the availability behavior of a system
– extensions are needed to distill results for automated

system comparison
• A good fault-injection environment is critical

– need realistic, reproducible, controlled faults
– system designers should consider building in hooks for

fault-injection and availability testing
• Measuring and understanding availability will
be crucial in building systems that meet the
needs of modern server applications
– our benchmarking methodology is just the first step

towards this important goal

Slide 24

Availability: Future opportunities
• Understanding availability of more complex
systems
– availability benchmarks for databases

» inject faults during TPC benchmarking runs
» how well do DB integrity techniques (transactions,

logging, replication) mask failures?
» how is performance affected by faults?

– availability benchmarks for distributed applications
» discover error propagation paths
» characterize behavior under partial failure

• Designing systems with built-in support for
availability testing

• Have ideas? You can help!

Slide 25

Part II

Maintainability Benchmarks

Slide 26

Outline: Maintainability Benchmarks
• Motivation: why benchmark maintainability?

• Maintainability benchmarks: an idea for a
general approach

• Case study: maintainability of software RAID
– Linux (RH6.0), Solaris (x86), and Windows 2000

– User trials with five subjects

• Discussion

Slide 27

Motivation
• Human behavior can be the determining factor
in system availability and reliability
– high percentage of outages caused by human error
– availability often affected by lack of maintenance,

botched maintenance, poor configuration/tuning
– we’d like to build “touch-free” self-maintaining systems

• Again, no tools exist to provide insight into
what makes a system more maintainable
– our availability benchmarks purposely excluded the

human factor
– benchmarks are a challenge due to human variability
– metrics are even sketchier here than for availability

Slide 28

Metrics & Approach
• A system’s overall maintainability cannot be
universally characterized with a single number
– too much variation in capabilities, usage patterns,

administrator demands and training, etc.

• Alternate approach: characterization vectors
– capture detailed, universal characterizations of

systems and sites as vectors of costs and frequencies
– provide the ability to distill the characterization

vectors into site-specific metrics
– can isolate human- and system-dependent factors

Slide 29

Methodology
• Characterization-vector-based approach

1) build an extensible taxonomy of maintenance tasks
2) measure the normalized cost of each task on system

» result is a cost vector characterizing components of a
system’s maintainability

3) measure task frequencies for a specific site/system
» result is a frequency vector characterizing a site/sys

4) apply a site-specific cost function
» distills cost and frequency characterization vectors
» captures site-specific usage patterns, administrative

policies, administrator priorities, . . .

Slide 30

1) Build a task taxonomy
• Enumerate all possible administrative tasks

– structure into hierarchy with short, easy-to-measure
bottom-level tasks

• Example: a slice of the task taxonomy

Storage management

System management

RAID management

Handle disk failure Add capacity

......
......

... ... Bottom-level
tasks

Slide 31

1) Build a task taxonomy
• Enumerate all possible administrative tasks

– structure into hierarchy with short, easy-to-measure
bottom-level tasks

• Example: a slice of the task taxonomy

Storage management

System management

RAID management

Handle disk failure Add capacity

......
......

... ...
• Sounds daunting! But...

– work by Anderson, others has already described much
of the taxonomy

– natural extensibility of vectors provides for
incremental construction of taxonomy

Slide 32

2) Measure a task’s cost
• Multiple cost metrics

– time: how long does it take to perform the task?
» ideally, measure minimum time that user must spend

• no “think time”
• experienced user should achieve this minimum

» subtleties in handling periods where user waits for sys.
– impact: how does the task affect system availability?

» use availability benchmarks, distilled into numbers
– learning curve: how hard is it to reach min. time?

» this one’s a challenge since it’s user-dependent
» measure via user studies

• how many errors do users make while learning tasks?
• how long does it take for users to reach min. time?
• does frequency of user errors decrease with time?

Slide 33

3) Measure task frequencies
• Goal: determine relative importance of tasks

– inherently site- and system-specific
• Measurement options

– administrator surveys
– logs (machine-generated and human-generated)

• Challenges
– how to separate site and system effects?

» probably not possible
– how to measure frequencies on non-deployed system?

on non-production site?
» estimates plus incremental refinement

Slide 34

4) Apply a cost function
• Simple approach:

– human time cost: take dot product of time
characterization vector with frequency vector

– availability cost: take dot product of impact vector
with frequency vector

– doesn’t take learning curve into account
• Better approach:

– adjust time and availability costs using learning curve
» task frequency picks a point on learning curve
» task time and error rate adjust time and impact costs

– then apply simple dot product
• Sites can define any arbitrary cost function

Slide 35

Case Study
• Goal is to gain experience with a small piece
of the problem
– can we measure the time and learning-curve costs for

one task?
– how confounding is human variability?
– what’s needed to set up experiments for human

participants?

• Task: handling disk failure in RAID system
– includes detection and repair

Slide 36

Experimental platform
• 5-disk software RAID backing web server

– all disks emulated (50 MB each)
– 4 data disks, one spare
– emulator modified to simulate disk insertion/removal
– light web server workload

» non-overlapped static requests issued every 200us

• Same test systems as availability case study
– Windows 2000/IIS, Linux/Apache, Solaris/Apache

• Five test subjects
– 1 professor, 3 grad students, 1 sysadmin
– each used all 3 systems (in random order)

Slide 37

Experimental procedure
• Training

– goal was to establish common knowledge base
– subjects were given 7 slides explaining the task and

general setup, and 5 slides on each system’s details
» included step-by-step, illustrated instructions for task

Slide 38

Experimental procedure (2)
• Experiment

– an operating system was selected
– users were given unlimited time for familiarization
– for 45 minutes, the following steps were repeated:

» system selects random 1-5 minute delay
» at end of delay, system emulates disk failure
» user must notice and repair failure

• includes replacing disks and initiating/waiting for
reconstruction

– the experiment was then repeated for the other two
operating systems

Slide 39

Experimental procedure (3)
• Observation

– users were videotaped
– users used “control GUI” to simulate removing and

inserting emulated disks

– observer recorded time spent in various stages of
each repair

Slide 40

Sample results: time
• Graphs plot human time, excluding wait time

Trial Number
1 2 3 4 5 6 7 8 9

Se
co

nd
s

(h
um

an
 ti

m
e)

0

50

100

150

200

250

300

350

400

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

Solaris

Trial Number
1 2 3 4 5 6 7 8 9

Se
co

nd
s

(h
um

an
 ti

m
e)

0

50

100

150

200

250

300

350

400

Subject 2
Subject 3
Subject 4
Subject 5

Linux

Trial Number
1 2 3 4 5 6 7 8 9

Se
co

nd
s

(h
um

an
 ti

m
e)

0

50

100

150

200

250

300

500
750

1000

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

Windows

Slide 41

Analysis of time results
• Rapid convergence across all OSs/subjects

– despite high initial variability
– final plateau defines “minimum” time for task
– subject’s experience/approach don’t influence plateau

» similar plateaus for sysadmin and novice
» script users did about the same as manual users

Slide 42

Analysis of time results (2)
• Apparent differences in plateaus between OSs

70.0 ± 33.060.4 ± 14.245.0 ± 12.395% conf. interval
28.712.48.9Std. dev.
70.060.445.0Mean plateau value

WindowsLinuxSolarisMetric, in seconds

• But not statistically-supportable differences
at 95% confidence

70.118NoSolaris < Windows
140.165NoLinux < Windows
60.093NoSolaris < Linux

Subjects needed for
95% confidence

P-valueSupported at
95% confidence?

Claim

• we’re not far off in size of study, though

Slide 43

Learning curve results
• We measured the number of errors users
made and the number of system anomalies

Small Software Anomaly
313335Total number of trials

Large Software Anomaly
User Error – Recovered
User Error – Observer Required
Fatal input inexplicably ignored
Unsuccessful Repair
Fatal Data Loss

LinuxSolarisWindowsError type

• Fewer errors for GUI system (Windows)
• Linux suffered due to drive naming complexity
• Solaris’s CLI caused more (non-fatal) errors, but good

design and clear prompts allowed users to recover

Slide 44

Learning curve results (2)

Iteration
1 2 3 4 5 6 7 8 9

N
um

be
r o

f e
rr

or
s

0

1

2

3

Windows
Solaris
Linux

• Distribution of errors over time

• Only Windows shows expected learning curve
– suggests inherent complexity in Linux, Solaris that

hurts maintainability?

Slide 45

Summary of results
• Time: Solaris wins

– followed by Linux, then Windows
– important factors:

» clarity and scriptability of interface
» number of steps in repair procedure
» speed of CLI versus GUI

• Learning curve: Windows wins
– followed by Solaris, then Linux
– important factors:

» task guidance provided by GUI
» physically-relevant resource naming scheme
» clarity of status displays

Slide 46

Discussion of methodology
• Our experiments only looked at a small piece

– no task hierarchy, frequency measurement, cost fn
– but still interesting results

» including different rankings on different metrics: OK!

• Non-trivial to carry out full methodology
– single-task experiments took 1-2 man-weeks of work,

with existing testbed
– benchmarking an entire system will take lots of time,

human subjects, new testbeds
– methodology makes sense for a few important tasks,

but needs to be constrained to become practical

Slide 47

Making the methodology practical
• The expensive part is what makes it work

– human subjects and experiments
• Need an appropriate constrained environment

– high-end, where benchmark cost is justifiable
– only well-trained administrators as subjects

» avoids learning curve complexity, simplifies expt’s
– pre-defined set of tasks

• Target: TPC database benchmarks
– an optional “maintainability test” after regular run
– vendor supplies n best administrators
– use a combination of required tasks, fault injection
– measure impact on perf., availability, human time

Slide 48

Early reactions
• Reviewer comments on early paper draft:

– “the work is fundamentally flawed by its lack of
consideration of the basic rules of the statistical
studies involving humans...meaningful studies contain
hundreds if not thousands of subjects”

– “The real problem is that, at least in the research
community, manageability isn't valued, not that it isn't
quantifiable”

• We have an uphill battle
– to convince people that this topic is important
– to make the benchmarks practical
– to transplant understanding of human studies

research to the systems community

Slide 49

Looking for feedback...
• Is manageability interesting enough for the
community to care about it?
– ASPLOS reviewer: The real problem is that, at least

in the research community, manageability isn't valued
• Is the human-experiment approach viable?

– will the community embrace any approach involving
human experiments?

– is the cost of performing the benchmark greater than
the value of its results?

– can we eventually get rid of the human?
– what are other possibilities?

• What about unexpected non-repetitive tasks?
– like diagnosis

Slide 50

Conclusions
• Availability and maintainability benchmarks can
reveal important system behavior
– availability: undocumented design decisions, policies

that significantly affect availability
– maintainability: influence of UI, resource naming on

speed and robustness of maintenance tasks

• Both areas are still immature compared to
performance benchmarks
– lots of work needed to make the kind of results we

demonstrated generally accessible
– much future research in developing appropriate

practical restrictions of our methodologies

Slide 51

Discussion topics?
• Extending benchmarks to non-storage domains

– fault injection beyond disks
• Practical implementation

– testbeds: fault injection, workload, sensors
– distilled numerical results

• Issues of coverage and relevance
– again, fault injection
– maintainability: capturing diagnosis tasks?

Slide 52

Backup Slides

Slide 53

Approaching availability benchmarks
• Goal: measure and understand availability

– find answers to questions like:
» what factors affect the quality of service delivered by

the system?
» by how much and for how long?
» how well can systems survive typical fault scenarios?

• Need:
– metrics
– measurement methodology
– techniques to report/compare results

Slide 54

Example Quality of Service metrics
• Performance

– e.g., user-perceived latency, server throughput
• Degree of fault-tolerance
• Completeness

– e.g., how much of relevant data is used to answer query
• Accuracy

– e.g., of a computation or decoding/encoding process
• Capacity

– e.g., admission control limits, access to non-essential
services

Slide 55

System configuration

IBM
18 GB

10k RPM

IBM
18 GB

10k RPM

IBM
18 GB

10k RPM

Server

AMD K6-2-333
64 MB DRAM

Linux/Solaris/Win

IDE
system

disk

= Fast/Wide SCSI bus, 20 MB/sec

Adaptec
2940

Adaptec
2940

Adaptec
2940 Adaptec

2940

RAID
data disks

IBM
18 GB

10k RPM

SCSI
system

disk

Disk Emulator

AMD K6-2-350
Windows NT 4.0

ASC VirtualSCSI lib.

Adaptec
2940

emulator
backing disk

(NTFS)AdvStor
ASC-U2W

Ultra
SCSI

Emulated
Spare
Disk

Emulated
Disk

• RAID-5 Volume: 3GB capacity, 1GB used per disk
– 3 physical disks, 1 emulated disk, 1 emulated spare disk

• 2 web clients connected via 100Mb switched Ethernet

Slide 56

Single-fault results
• Only five distinct behaviors were observed

Slide 57

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
its

 p
er

 s
ec

on
d

130

135

140

145

150

155

160

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

Behavior A: no effect

• Injected fault has no effect on RAID system
Solaris, transient correctable read

Slide 58

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
its

 p
er

 s
ec

on
d

150

160

170

180

190

200

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

Behavior B: lost redundancy

• RAID system stops using affected disk
– no more redundancy, no automatic reconstruction

Windows 2000, simulated disk power failure

Slide 59

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

• RAID stops using affected disk, automatically
reconstructs onto spare
C-1: slow reconstruction with low impact on workload
C-2: fast reconstruction with high impact on workload

C1: Linux, tr. corr. read; C2: Solaris, sticky uncorr. write

Behavior C: automatic reconstruction

Slide 60

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
its

 p
er

 s
ec

on
d

0

5

10

130

140

150

160

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

Behavior D: system failure

• RAID system cannot tolerate injected fault
Solaris, disk hang on read

Slide 61

System comparison: single-fault
Fault Type Linux Solaris Win2000

Correctable read, T reconstruct no effect no effect
Correctable read, S reconstruct no effect no effect
Uncorr. read, T reconstruct no effect no effect
Uncorr. read, S reconstruct reconstr. degraded

Corr. write, T reconstruct no effect no effect
Corr. write, S reconstruct no effect no effect
Uncorr. write, T reconstruct no effect degraded
Uncorr. write, S reconstruct reconstr. degraded
Hardware err, T reconstruct no effect no effect
Illegal command, T reconstruct reconstr. no effect
Disk hang, read failure failure failure
Disk hang, write failure failure failure
Disk hang, nocmd failure failure failure
Power failure reconstruct reconstr. degraded
Pull active disk reconstruct reconstr. degraded

– Linux reconstructs on
all faults

– Solaris ignores benign
faults but rebuilds on
serious faults

– Windows ignores
benign faults

– Windows can’t
automatically rebuild

– All systems fail when
disk hangs

T = transient fault, S = sticky fault

Slide 62

Time (minutes)
0 20 40 60 80 100 120 140 160

H
its

 p
er

 s
ec

on
d

100

120

140

160

180

200

220

(2) Reconstruction

(5) Reconstruction

(1) (3)

(4)

Example multiple-fault result

• Scenario 1, Windows 2000
– note that reconstruction was initiated manually

Slide 63

Time (minutes)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

H
its

 p
er

 s
ec

on
d

100

120

140

160

180

200

220

(2) Reconstruction (5) Reconstruction

(1) (3)
(4) : 86 hits/sec

Multi-fault results
• Linux

Slide 64

Multi-fault results (2)

Time (minutes)
0 20 40 60 80 100 120 140 160

H
its

 p
er

 s
ec

on
d

100

120

140

160

180

200

220

Reconstruction

(5) Reconstruction

(1) (3)

(4)(2)

Time (minutes)
0 20 40 60 80 100 120 140

H
its

 p
er

 s
ec

on
d

100

120

140

160

180

200

220

Recon-
struction

(1) (3)

(4)

(2) Recon-
struction

(5)

• Windows 2000 • Solaris

Slide 65

Future Directions: Maintainability
• We have a long way to go before these ideas
form a workable benchmark
– completing a standard task taxonomy
– automating and simplifying measurements of task cost

» built-in hooks for system-wide fault injection and user
response monitoring

» can we eventually get the human out of the loop?
– developing site profiling techniques to get task freqs
– developing useful cost functions

• Better human studies technology needed
– collaborate with UI or social science groups
– larger-scale experiments for statistical significance

» collaborate with sysadmin training schools?

	Availability and Maintainability BenchmarksA Case Study of Software RAID Systems
	Overview
	Overview
	Part I
	Outline: Availability Benchmarks
	Why benchmark availability?
	Step 1: Availability metrics
	Step 2: Measurement techniques
	Step 3: Reporting results
	Case study
	Benchmark environment
	Benchmark environment: faults
	Single-fault experiments
	Multiple-fault experiments
	Comparison of systems
	Transient error handling
	Transient error handling (2)
	Reconstruction policy
	Reconstruction policy: graphical view
	Reconstruction policy (2)
	Double-fault handling
	Availability Conclusions: Case study
	Conclusions: Availability benchmarks
	Availability: Future opportunities
	Part II
	Outline: Maintainability Benchmarks
	Motivation
	Metrics & Approach
	Methodology
	1) Build a task taxonomy
	1) Build a task taxonomy
	2) Measure a task’s cost
	3) Measure task frequencies
	4) Apply a cost function
	Case Study
	Experimental platform
	Experimental procedure
	Experimental procedure (2)
	Experimental procedure (3)
	Sample results: time
	Analysis of time results
	Analysis of time results (2)
	Learning curve results
	Learning curve results (2)
	Summary of results
	Discussion of methodology
	Making the methodology practical
	Early reactions
	Looking for feedback...
	Conclusions
	Discussion topics?
	Backup Slides
	Approaching availability benchmarks
	Example Quality of Service metrics
	System configuration
	Single-fault results
	Behavior A: no effect
	Behavior B: lost redundancy
	Behavior C: automatic reconstruction
	Behavior D: system failure
	System comparison: single-fault
	Example multiple-fault result
	Multi-fault results
	Multi-fault results (2)
	Future Directions: Maintainability

