
OSDI Work-in-Progress Abstract, San Diego, CA, October 2000 

Reboot-Based High Availability
Turning evil reboots into reliable friends

George Candea, Armando Fox
Stanford University

{candea,fox}@cs.stanford.edu 

Large scale, critical software infrastructures consist of industrial strength components that have
undergone extensive testing and debugging. Despite this, failures still occur, primarily due to
Heisenbugs that are typically "resolved" by rebooting. Furthermore, since scheduled downtime is
cheaper than unscheduled downtime, many 24x7 services undergo periodic, prophylactic reboots to
avoid failures that may result from software aging (e.g., slow memory leaks). Conceding that
Heisenbugs will remain a fact of life, we propose a systematic investigation of reboots as a
high-availability mechanism. Our approach is based on: 

"Partial reboots" that minimize time-to-restart; 
An execution infrastructure; 
A set of techniques for making software amenable to restart-based failure management. 

A partial reboot is one in which only components that require cleanup are restarted, without bringing the
entire service down. At its core lies a "restartability tree"; parent software components provide
mechanisms for isolating their children from each other, and can cleanly restart children after reclaiming
their resources. For example, processes can be cleanly restarted by the OS, which also provides isolation
mechanisms such as virtual memory and I/O multiplexing; a similar analogy applies to threads in a
process, though they enjoy weaker isolation from each other. 

The execution infrastructure relies on each component providing two methods: PROBE and RESTART.
PROBE is called periodically and performs an application-level progress check whose semantics are
necessarily application-specific. PROBEs are supplemented by end-to-end checks, such as verifying the
response to a well-known query. RESTART, called when PROBE reveals a possible anomaly, advises
the component that it should clean up any pending state because it is about to be restarted by its
immediate ancestor in the restartability tree. An analogy would be UNIX services that understand the
common idiom "kill -TERM; sleep 5; kill -9". If restarting does not eliminate the anomaly, a reboot at a
higher level of the hierarchy is attempted (e.g., if the TCP stack is corrupted and restarting the process
does not help, rebooting the OS may allow the service to resume). 

We also seek to codify rules for (re)structuring applications into components whose interactions are
likely to support this simple, effective form of maintaining availability. We are systematically extracting
guidelines from existing work on soft state, announce/listen protocols, orthogonal application
mechanisms, and loosely coupled distributed systems. The result should make our system well suited to
both reactive failure management and proactive software rejuvenation. 


