Rebootbased High Availability

Turning into reliable friends

George Candea Armando Fox

Stanford University

« Software infrastructures = aggregation of industrial

* Good news:= 90% of bugs in producticuality

¢ System management costs >> installation costs

Motivation

strength software components, yet...

— 40% of total unplanned downtime due to application failure
[Gartnef

— Business losses: average $6.45 million/hour of downtime fd
brokerage industry [Dataquest]

software are transient [Adams, Gray] REBOOT !

Modeling Software Systems

Problem:mappingis
notsurjective

Bug - transition to $
(usually not accounted for)

Modeling Partial Reboots

_ Component can deterministical
return to wellknown, clean stat
(e.g., deadlocks in a DBMS

front end

MTTF

Availability=——————
MTTF +MTTF

lim(Avail) =1 impossible

MTTF -0

lim(Avail) =1 easier
MTTR-.0

“manager

Restartability Tree

MTTR Certainty

« Captures reboetelated
dependencies

 Expresses intecomponen
hierarchy

» Cannot rely on componerjt
to restart cleanly
Parent node:

« reclaims all resources from children
« restarts children

Execution Infrastructure

* Amorphous cooperative of sefhanaging segments
« Segment = unit of glue between applications and infrastructurg
« Can distribute segments locally (LAN) or geographically (WAN

Each segment —

monitors its
peers based ‘ A segment
on heartbeats Ii = re| licu}'\res to
| = other hosts
|_ = over ssh

UDP over IP multicast
(no point-to-point 1)

Component Hooks

Application

Segment probes Component

component
periodically, Detected anomaly:
ask component
= to prepare for restart
PROBE RESTART

Execution infrastructure segment ‘

« Time to prepare is preletermined (execution contract)
« Component’s parent restarts it after preparation time elapses

Evaluating Application Progress

communication
monitoring™

Application

endto-end

Component
s checks

PROBE

Execution infrastructure segment ‘

2 types of checks: applicatiespecific (PROBE)
domainspecific (e.g., wetknown query)

Applications as Distributed System

* Functional distribution
Distribute components, even if logicalgplocated
» Loose coupling

Glue components together with announce/listen protocols

* Minimal intercomponent assumptions

When components make implicit assumptions, they are
overflowing their boundaries

» Weaker guarantees, stronger best effort
E.g., IP is extremely robust, in spite of not guaranteeing much

Restartablé&oftware

¢ Lend, don't grant

Simplifies recovery and restart because failed system returns tqg
a clean state after the lease times out

* Persistent state. soft and/or degradable state
Trade consistency for availability

« Orthogonal mechanisms with minimal state sharing

Maximizes effectiveness of partial reboots

Evaluation Methodology

« Compare to existing high availability mechanisms
using fault injection
« Evaluate execution infrastructure at different
levels of application modification
1. No changes
2. Rudimentary PROBE and RESTART
3. PROBE/RESTART + restartability guidelines
* Deploy in 24x7 environments

Related Work

Use periodic reboots to prevent failures caused by softwaregagin
Y. Huang, CKintala, N. Kolettis N.D. Fulton, Software rejuvenation: analysis,
module and applications. Proc. FTCS 1995, pp-380.

Distributed execution platform with segments that migrate ipaase to failure
J.F.Shoch J.A.Hupp The "Worm" Programs Early Experience with a Distributed
Computation, CACM 25(3): 17280 (1982).

Generic, transparent application recovery is impossible in rnases
D.E. Lowell, S.ChandraP.M.Chen, Exploring Failure Transparency and the Limits
of Generic Recovery, Proc. OSDI 2000.

How to write software components that are easy to reuse andasenp
D. Garlan R. Allen, J.Ockerbloom Architectural Mismatch or Why it's hard to
build systems out of existing parts, Proc. ICSE 1995, pp-188

References

[Adams]
E. Adams, Optimizing preventative service of software prodiid,Journal
of Research and Development, 28(1)#(1984).
[Dataquest]
J. Sheridan, High Availability How High Can You Go?, Dataquest
Technology Analysis Perspectiv@artnerGroup, September 1996.
[Gartnet
D. Scott, Making Smart Investments to Reduce Unplanned Downtime,
Research NoteGartnerGroup, March 1999.
[Gray]
J. Gray, Why Do Computers Stop And What Can Be Done About it P
SRDS 1986, pp.-32.

