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« Software infrastructures = aggregation of industrial

* Good news:= 90% of bugs in producticuality

¢ System management costs >> installation costs

Motivation

strength software components, yet...

— 40% of total unplanned downtime due to application failure
[Gartnef

— Business losses: average $6.45 million/hour of downtime fd
brokerage industry [Dataquest]

software are transient [Adams, Gray] REBOOT !

Modeling Software Systems
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Modeling Partial Reboots
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Restartability Tree

MTTR Certainty

« Captures reboetelated
dependencies

 Expresses intecomponen
hierarchy

» Cannot rely on componerjt
to restart cleanly
Parent node:

« reclaims all resources from children
« restarts children

Execution Infrastructure

* Amorphous cooperative of sefhanaging segments
« Segment = unit of glue between applications and infrastructurg
« Can distribute segments locally (LAN) or geographically (WAN

Each segment —

monitors its
peers based ‘ A segment
on heartbeats Ii = re| licu}'\res to
| = other hosts
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UDP over IP multicast
(no point-to-point 1)

Component Hooks

Application

Segment probes Component

component
periodically, Detected anomaly:
ask component
= to prepare for restart
PROBE RESTART

Execution infrastructure segment ‘

« Time to prepare is preletermined (execution contract)
« Component’s parent restarts it after preparation time elapses

Evaluating Application Progress

communication
monitoring™

Application

endto-end

Component
s checks

PROBE

Execution infrastructure segment ‘

2 types of checks: applicatiespecific (PROBE)
domainspecific (e.g., wetknown query)




Applications as Distributed System

* Functional distribution
Distribute components, even if logicalgplocated
» Loose coupling

Glue components together with announce/listen protocols

* Minimal intercomponent assumptions

When components make implicit assumptions, they are
overflowing their boundaries

» Weaker guarantees, stronger best effort
E.g., IP is extremely robust, in spite of not guaranteeing much

Restartablé&oftware

¢ Lend, don't grant

Simplifies recovery and restart because failed system returns tqg
a clean state after the lease times out

* Persistent state. soft and/or degradable state
Trade consistency for availability

« Orthogonal mechanisms with minimal state sharing

Maximizes effectiveness of partial reboots

Evaluation Methodology

« Compare to existing high availability mechanisms
using fault injection
« Evaluate execution infrastructure at different
levels of application modification
1. No changes
2. Rudimentary PROBE and RESTART
3. PROBE/RESTART + restartability guidelines
* Deploy in 24x7 environments
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