
1

Reboot-based High Availability

Turning evil reboots into reliable friends

�����������
	���
������ ��������
����������

��� ��
�����������
� !"����#� ��$

Motivation

• Software infrastructures = aggregation of industrial
strength software components, yet…
– 40% of total unplanned downtime due to application failure

[Gartner]

– Business losses: average $6.45 million/hour of downtime for
brokerage industry [Dataquest]

• Good news: ≥ 90% of bugs in production-quality
software are transient [Adams, Gray] → REBOOT !

• System management costs >> installation costs

Modeling Software Systems

of software states << # of hardware states

Problem: mappingis
not surjective

Bug ⇔ transition to SC
(usually not accounted for)

Software

Hardware

Modeling Partial Reboots

front end

queue

worker

worker

manager

Component can deterministically
return to well-known, clean state

(e.g., deadlocks in a DBMS)

MTTRMTTF

MTTF
tyAvailabili

+
=

1)lim(=
∞→MTTF

Avail

1)lim(
0

=
→MTTR

Avail

impossible

easier

2

Restartability Tree

cluster

Host 1

httpd sendmail Oracle httpd

Host 2 Host 3

named

T1 T2 T3

LGWR PMON SMON

T1 T2 T3

MTTR Certainty

Parent node:
• reclaims all resources from children
• restarts children

• Captures reboot-related
dependencies

• Expresses inter-component
hierarchy

• Cannot rely on component
to restart cleanly

Execution Infrastructure

%�&('*) +�,.-0/�'010243 5"6 7 8:9:5

• Amorphous cooperative of self-managing segments
• Segment = unit of glue between applications and infrastructure
• Can distribute segments locally (LAN) or geographically (WAN)

; 9�,=<�1*,.> 5
-:,@?.3 6 7 845�, 9*5")

A >.)�?.).6 > 5�B 5").B ?.).6 > 5DC E

; 3 3=9�F=8�-:,@G(9:5H845",
6 9*9�).I 5

J 8�74F(9�, <�1K,�> 5
10)4>.6 5").- 9D6 5H9
?.,@,@- 9DLH849",@G
).>�F�, 8�- 5"L�,=8:5M9

) 5�F�,@-*F@) 9M5M9
) +�,.-�9:9�F

Component Hooks

NPORQRSUT�NVSW�X�YVZ�[

Execution infrastructure segment

Application
ComponentSegment probes

component
periodically Detected anomaly:

ask component
to prepare for restart

• Time to prepare is pre-determined (execution contract)
• Component’s parent restarts it after preparation time elapses

Evaluating Application Progress

W\X�YVZ�[

Execution infrastructure segment

Application
Component end-to-end

checks

communication
monitoring

2 types of checks: application-specific (PROBE)
domain-specific (e.g., well-known query)

3

Applications as Distributed Systems

• Functional distribution
Distribute components, even if logically colocated

• Loose coupling
Glue components together with announce/listen protocols

• Minimal inter-component assumptions
When components make implicit assumptions, they are
overflowing their boundaries

• Weaker guarantees, stronger best effort
E.g., IP is extremely robust, in spite of not guaranteeing much

RestartableSoftware

• Lend, don’t grant
Simplifies recovery and restart because failed system returns to
a clean state after the lease times out

• Persistent state → soft and/or degradable state
Trade consistency for availability

• Orthogonal mechanisms with minimal state sharing
Maximizes effectiveness of partial reboots

Evaluation Methodology

• Compare to existing high availability mechanisms
using fault injection

• Evaluate execution infrastructure at different
levels of application modification

1. No changes

2. Rudimentary PROBE and RESTART

3. PROBE/RESTART + restartability guidelines

• Deploy in 24x7 environments

Related Work

Use periodic reboots to prevent failures caused by software aging
Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, Software rejuvenation: analysis,
module and applications. Proc. FTCS 1995, pp. 381-390.

Distributed execution platform with segments that migrate in response to failure
J.F.Shoch, J.A.Hupp, The "Worm" Programs - Early Experience with a Distributed
Computation, CACM 25(3): 172-180 (1982).

Generic, transparent application recovery is impossible in most cases
D.E. Lowell, S. Chandra, P.M.Chen, Exploring Failure Transparency and the Limits
of Generic Recovery, Proc. OSDI 2000.

How to write software components that are easy to reuse and compose
D. Garlan, R. Allen, J. Ockerbloom, Architectural Mismatch or Why it’s hard to
build systems out of existing parts, Proc. ICSE 1995, pp. 179-185.

4

References

[Adams]
E. Adams, Optimizing preventative service of software products, IBM Journal
of Research and Development, 28(1):2-14 (1984).

[Dataquest]
J. Sheridan, High Availability – How High Can You Go?, Dataquest

Technology Analysis Perspective,GartnerGroup, September 1996.

[Gartner]
D. Scott, Making Smart Investments to Reduce Unplanned Downtime,
Research Note, Gartner Group, March 1999.

[Gray]
J. Gray, Why Do Computers Stop And What Can Be Done About It?, Proc.
SRDS 1986, pp. 3-12.

