Statistical Analysis & Systems: Retrospective and Going Forward

Emre Kıcıman
emrek@cs.stanford.edu
Software Infrastructures Group
Stanford University
This talk

- Quick motivation
 - We all want to ski.

- Pitfalls and observations

- Future work
Large, complex systems, changing rapidly: translates to systems we don't understand
 - e.g., Internet services, wide-area distributed systems, Internet

Solid engineering helps!
 - but still poorly understood emergent behavior at large scale

Further complications
 - Frequent HW & SW changes
 - buggy software, HW failures, human error
Problem: Hard to Manage

- Issue: How to keep these systems running?
 - Adapt to changing environment, performance, workload
 - ... leading to failures, performance issues, etc.

- Car analogy: Driving with magnifying glass
 1. Overwhelmed by details
 2. Unable to focus on important stuff at a distance

- Concrete ex: Drop in searches/sec at search svc
 - No connection b/w symptoms of failure and cause
 - Wade through low-level details of components to find problem
What's needed?

- Techniques to bridge low-level behaviors & controls with high-level requirements

- Must scale to complexity, size & rate of change

- Non-goal: taking humans out of the loop

- Goal: Allow people to concentrate on the high-level
 - Minimize minutiae of systems
 - ... and automate micro-management
Approach

- Use statistical analysis & machine learning to bridge the gap
 - Basic assumption: there is a relationship between low- and high-level. We just don't know what it is.

- Combine
 1. Lots and lots of observations of the system
 2. Weak assumptions about system

- ... to translate low-level observations into high-level descriptions
How's that gone so far?

- **Failure detection**
 - Better & faster failure detection through anomaly detection
 - ... in JBoss / J2EE, and clustered hash tables, 2 Int. Svc's

- **Failure diagnosis**
 - Tracking symptoms to possible causes through correlation
 - ... in JBoss / J2EE

- **Inferring extra structure to help understand sys.**
 - Using data clustering to recognize patterns in system
 - ... finding 'complex types' in Windows registry
 - ... finding equivalent nodes, etc. within an internet service

- **Take-away lessons coming up...**
Obs #1: High probability != Good

- System dominated by steady-state behavior
 - At short time-scales, steady-state is “very probable”

- But, many events necessary for correctness are rare
 - E.g., system initialization, garbage collection
 - ... probability estimates won't notice missing rare events

- Monitor rate of all events (including rare events)
 - Take into account more context
 - Increase time-scale, calculate probability of whole period
Consider requests in a customizable Internet service
- E.g., portals aggregate data from 10s or more of mini-services onto a single page
- Many permutations of customizations
- Most combinations are low-probability, but valid

Probabilities of observed request behaviors
- ... will correspond to user customization prefs
- ... and not to system failures

Split up request's behavior and analyze pieces
- In each piece, discount contribution of low-probability events by expected probability
Obs #3: Watch your Biases (1)

- General principle, applies to SLT+Systems

- Algorithms have biases
 - What's appropriate in other domains, may not be appropriate in systems

- Example: We used probable context free grammar (PCFG) to model request behavior in system
Scoring w/PCFG: Take 1

- Probability-based scoring

- Score s of a new path is:

$$s = 1 - \prod_{t \in \text{transition}} P(t)$$

$$s \left(\begin{array}{c} \text{A} \\ \rightarrow \\ \text{B} \\ \rightarrow \\ \text{C} \end{array} \right) = 1 - P(\text{A} \rightarrow \text{B}) \times P(\text{B} \rightarrow \text{C})$$

Sample Paths:

- A → B → C
- A → B
- A → BC

Learned PCFG:

- $S \rightarrow A \ p=1$
- $A \rightarrow B \ p=.5$
- $A \rightarrow BC \ p=.5$
- $B \rightarrow C \ p=.5$
- $B \rightarrow \$ \ p=.5$
- $C \rightarrow \$ \ p=1$
Scoring w/PCFG: Take 1 didn't work

\[
s(O\rightarrow O\rightarrow O\rightarrow O\rightarrow O\rightarrow O\rightarrow O\rightarrow O\rightarrow O\rightarrow O) = 1 - P(A \rightarrow B) \times P(B \rightarrow C) \times P(C \rightarrow D) \times \ldots \times P(G \rightarrow H)
\]

... \(s\) approaches 1 with long paths

- Bias against long paths!
 - OK in natural language
 - Not ok in systems
Scoring w/PCFG: Take 2

- Another NLP technique: use geometric mean
 - avoids bias against long paths

\[s (O \rightarrow O) = \]

\[1 - [P(A \rightarrow B) \times P(B \rightarrow C) \times P(C \rightarrow D) \times \ldots \times P(G \rightarrow H)]^{1/9} \]

- But hides anomalies if they don't affect many transitions
Scoring w/PCFG: 3rd time's the charm

- Sum the deviation between expected and observed probabilities at transitions
 - Sum instead of product to reduce bias against long paths
 - Uses “low-probability != bad” observation (pitfall #2)

\[s = \sum \min(0, \frac{1}{n_i} - P(t_i)) \]

- \(n_i \) = # possible transitions from a component
- \(P(t_i) \) is the observed probability of a specific transition
- Sum over all transitions in test path
Obs. #4: Imperfect system OK for training

- Learn “correct” behavior
 - but, anomalies always exist

- Will baseline anomalies mask problems?
 - Found: Only “most of system” must be correct
 - not “all of system”

- Rare path (1/1000) marked as anomalous
 - even though it is in baseline
Obs. #5: Prepare for imperfect analysis

- Analysis will sometimes be wrong
 - Algorithmic errors: statistics wrong some % of the time
 - Semantic errors: when assumptions don't hold

1. Cross-validate to filter out mistakes
 - e.g., in end-to-end autonomous recovery, we check that system is not already recovering
 - e.g., If everything is failing... maybe detector is wrong

2. Tolerate mistakes that slip through
 - Respond with a safe, fast action to reduce cost of mistakes [microreboots]

(if mistakes are OK, try being more aggressive)
Recap Take-aways

■ In fault detection: high- & low-probability don't always correspond to good & bad

■ Check algorithms for biases

■ Imperfect system OK for training

■ Prepare for imperfect analysis
 ● Double-check assumptions and cross-check results
 ● Trigger only cheap, safe responses
What's next?

1. Expand to more varieties of systems
 - Similar problems across wide variety of systems & networks
 - Capture commonalities, characterize differences
 - Collaborate and share solutions

2. Apply SLT to more systems management tasks
 - Automating micro-management (reinforcement learning)
 - App description / Policy specification
“Root cause” localization*

- Similar problem across at least 3 domains
 - Fault localization in Internet services
 - Root cause analysis of BGP dynamics
 - Bug isolation

- Abstract model 'localization' across these systems
 - Transformation from real system to model captures differences
 - Allows sharing of algorithmic approaches
 - ... comparison of trade-offs and assumptions
 - (hopefully) better collaboration across domains & w/SLT

“we'll let [someone else] decide what policy makes sense”

Just 1 example: where to deploy wide-area apps
- e.g., SETI, dynamic Akamai, others
- What resources are needed? (CPU/disk/mem/network)
- Now: let developer specify needs... (but varies with workload & environment)

How can we automatically find resource needs?
- Deploy 100s across wide-area (randomly)
- Measure performance & correlate to features of nodes
- (Migrate poor performing nodes to better suited ones)

Challenges
- measure performance, factoring out workload, cheap migration, ...
Automated Micro-management

- Environment, workload change frequently
 - Constantly tuning system to adapt & maintain performance & correctness
 - (fault recovery process “just” one adaptation)
 - Low-level knobs far-removed from high-level goals

- Linear control theory & reinforcement learning
 - Based on model of system, predict how to tune knobs to improve performance

- Challenge: do no harm
 - Validate actions after-the-fact
 - Detect when outside of safe region, hand-off to operator
Summary

- **Statistical analysis + systems**
 - Simplify, improve admin, reliability
 - Automatic analysis → handles complex systems
 - Fast training → scales to frequent system changes
 - First round of work promising, learned important lessons

- **Plenty of future work**
 - More systems, common problems, sharing solutions
 - More tasks requiring rapid adaptation, detailed understanding of system minutiae
Thanks

Questions?

Emre Kıcıman, emrek@cs.stanford.edu