
Evaluating the Effect of
Microreboots on End Users

George Candea + Armando Fox
with help from

Ben Ling and Wes Weimer

January 12, 2004

2 © 2004 George Candea

Review

Microreboots
restart fine-grained components “with a clean slate”

only take a fraction of the time needed for full system reboot

They provide
a simple recovery technique for Internet services

which can be supported entirely in middleware and

requires no changes to apps or a priori knowledge of app
semantics

Low cost use microreboots aggressively even when their
necessity is less than certain

reduces recovery time

reduces time spent detecting/diagnosing failures

3 © 2004 George Candea

Goals and Preview

Determine how infra microreboots impact end users

Microreboots are less disruptive in terms of downtime
and lost work (compared to full reboots)

Reduced (compared to a server process restart)
number of failed user requests by 65%

perceived downtime by 78%

4 © 2004 George Candea

Outline

1. Measuring end user experience in interactive
services

2. Session-weighted operation throughput

3. End user effects of microrebooting

5 © 2004 George Candea

Three-Tiered Architecture

6 © 2004 George Candea

Simulating End Users

RUBiS = open-source web-based auction application, modeled on eBay

client states correspond to various RUBiS operations, such as Register, PutBid, etc. (27 in total)
non-app-specific states: user hits back button and user spontaneously decides to end session

client workload described using a state transition table T
rows/columns = client's possible states
T(s1,s2) = probability of a client clicking from s1 to s2

Emulator uses table T to automatically navigate the web site
when in state s1, randomly choose the next state based on T(s) with the requested probability
then generates corresponding URL and “clicks” on it

T also has column for wait time inbetween clicking from a state to the next
we set this to zero initiate next HTTP request as soon as the current request completes (unlike a real
user)

Responses classified as incorrect:
network-level error (cannot connect to server, etc.)
HTTP 4xx or 5xx error code
HTML page containing particular keywords (“error”, “failed”', “exception”)

Use correct responses to compute goodput

7 © 2004 George Candea

The Goodput Anomaly

All DB conns
start failing

Goodput = throughput of successfully served
requests

Is the service available ? Is it delivering useful
service?

Can we increase goodput by failing components ?
(see total throughput...)

8 © 2004 George Candea

Sessions
Typical interaction of a client with the web site:

client goes to the homepage
browses around for a while performing different site actions (searching, etc.)

accumulates session state
decides to do something that touches the persistent-state database (e.g., place a bid, update
his/her profile, etc.)

assume interactions preceding the persistent-state update are just precursors to
crowning moment

failed op during session retry or
logout+login (typically at homepage)

session = sequence of URLs bracketed by
homepage and either abandonment of
site or return to homepage (new session)

definition relies on general user
behavior, not app semantics

Goodput anomaly explanation
discard requests in failed sessions

9 © 2004 George Candea

The Gwop Metric

Session-weighted goodput (Gwop)
weighs each session by the number of operations in it
measures standard throughput of successful/failed requests respectively, but
whenever a session fails, all ops in that session are counted as failed

Conservative metric for recovery measurements

Gwop captures the fact that when a long session succeeds, the user got a lot
more done than when a short session succeeds

10 © 2004 George Candea

Outline

1. Measuring end user experience in interactive
services

2. Session-weighted operation throughput

3. End user effects of microrebooting

11 © 2004 George Candea

Effect of Microreboots on End Users

Analogous to rebooting, a microreboot is a logical restart of an
application component that may be finer-grained than a process

Basic microrebootable component of J2EE applications is the EJB

Leverage existing JBoss mechanism for cleanly “shutting down” an
EJB

Isolate microreboot from fault detection initiate reboot w/out
injecting faults

i.e., app server instantaneously detects fault and initiates recovery

chosen workload covers all possible RUBiS operations
runs lasting 1 minute or longer routinely exercised all components

workload mix: 85% read ops and 15% DB write ops

12 © 2004 George Candea

Gwop for Reboot-Based Recovery

13 © 2004 George Candea

Summary of Results

73%52%293453-EJB
microreboot

78%65%242511-EJB
microreboot

13%14%94615RUBiS Restart

----108713JBoss Restart

Improvement
(downtime)

Improvement
(served reqs)

Downtime
[sec]

Failed
Reqs

Recovery
Technique

14 © 2004 George Candea

Improving End User Experience w/ Transparent Retry

Expose EJB microreboot through a RetryLater(t) exception

Modified EJB container catches RetryLater(t) exceptions and retries transparently

Call succeeds after predetermined number of retries original bean code sees successful call
Call fails container throws exception to the caller

Masks microreboots (and transient failures) from callers

Idempotency: invocations are atomic (call either goes through or RetryLater is thrown)
preserves JBoss's regular call semantics

In-progress calls fail (upon microreboot) the same way as if the EJB crashed, had a bug, etc.

15 © 2004 George Candea

Feedback

Better name for Gwop ?

http://crash.stanford.edu

16 © 2004 George Candea

Details on Microreboots

Application-generic recovery based on checkpointing applies to relatively few
existing applications

Part of the appeal of rebooting as a recovery tech is that it discards
corrupted transient state that might itself be the cause of the
failure or whose cleanup may be necessary in order for recovery to
succeed

Replace recovery with rebooting (logically equivalent to restarting from a
checkpoint that is the start state of the component) is likely to work

To ensure that it is safe, we need three environmental conditions:
Clear boundary around what is being rebooted
Loose coupling
Preserving state and consistency

Analogous to rebooting, a microreboot is a logical restart of an
application component that may be finer-grained than a process, but
the same requirements apply

Our basic microrebootable component of J2EE applications is the EJB

17 © 2004 George Candea

RUBiS Details

RUBiS = open-source web-based auction application, modeled on eBay

offers selling, browsing and bidding

three kinds of users: visitor, buyer, and seller, with buyer and seller
sessions requiring login

buyer can bid on items and consult a summary of their current bids, rating and
comments left by other users

Seller sessions require a fee before a user is allowed to put up
an item for sale

Seller can specify a reserve (minimum) price for an item

RUBiS contains 582 Java files and about 26K lines of code

Uses MySQL and stores 7 tables

In default configuration, RUBiS has 33,000 items for sale, distributed among
eBay's 40 categories and 62 regions. There is an average of 10 bids per item, or
330,000 entries in the bids table. The users table has 1 million entries.

18 © 2004 George Candea

Why choose 20 clients ?

20 concurrent clients with no think time inbetween successive requests

human user typically spends in excess of 2 seconds between clicks, we believe the load
placed by one of our simulated clients is equivalent to that of 100 or more real clients

did not want to introduce artificial think time (the way is done, for instance, in the TPC-W
benchmark) because having think time would add one more variable to the experiment
and would not offer any useful insight for microreboot experiments

20 concurrent rapid clients is the threshold beyond which thrashing and other side effects
would reduce throughput

19 © 2004 George Candea

Experimental Platform

mimic what would be typical of a small Internet service

Linux RedHat 9.0

JBoss and the Web tier run on an AMD Athlon XP 2600+ PC
with 1.5 GB RAM

Database (MySQL Max 3.23) on another identical node

Sun HotSpot JVM 1.4.1. and allocate it 1 GB of RAM

Client emulator on a dual P-III (2x866 MHz) with 1 GB RAM

All machines interconnected by 100 Mbps Ethernet switch

20 © 2004 George Candea

RUBiS f-map

description of the failure dependencies between RUBiS's components using automated fault-propagation
inference (AFPI)

majority of such dependencies in RUBiS are between the stateless servlets and EJBs

AFPI information is collected during a completely automated fault-injection campaign that requires no a
priori knowledge of the applications' structure
or semantics

For RUBiS, a simple recovery policy could be based on the fact that there is a known mapping from the
URL being accessed to the action being taken (and hence the EJBs being touched)

