Latency Lags Bandwidth

David Patterson

January 10, 2004

(Email comments to patterson@cs.berkeley.edu)

As I review performance trends, I am struck by a consistent theme across many technologies: bandwidth improves much more quickly than latency. This paper lists several performance milestones to document this observation, many reasons why it happens, a few ways to cope with it, and a rule of thumb to quantify it.

Table 1 identifies four to six performance milestones over the last 20 to 25 years for microprocessors, memory, networks, and disks. The microprocessor milestones are six generations of IA-32 processors, going from a 16-bit bus, microcoded 80286 to a 64-bit bus, superscalar, out-of-order execution, superpipelined Pentium 4. Memory modules go from 16-bit wide plain DRAM to 64-bit wide DDR SDRAM. Ethernet advanced from 10 Mbit/sec to 10 Gbit/sec. Disk rotation speed improved from 3600 RPM to 15000 RPM. I use best case bandwidth, and latency is the time for a simple operation assuming there is no contention. Note that this table ignores bandwidth gains in a system due to multiple processors, multiple memory banks, network bridges and switches, and disk arrays.

Figure 1 plots the relative improvement in bandwidth and latency for each of those milestones in each technology. Performance is the primary differentiator for microprocessors and networks, so they have seen the greatest gains: 1000X in bandwidth and 10X in latency. Capacity is generally more important than performance for memory and disks, and so their capacity has improved most, yet their bandwidth advances are still much greater than their gains in latency. Clearly, bandwidth has outperformed latency across all four technologies.

Table 2 summarizes the average improvement for each of these technologies. The first three rows give the annual rate of improvement in latency, capacity, and bandwidth. To help find a rule of thumb, the next row shows how many years it takes bandwidth to double at that annual rate of improvement. The last two rows show the advance in capacity and latency in that bandwidth doubling time.

Table 3 is a more recent version of same information in Table 2, this time limited to the three latest milestones. The time for bandwidth to double in the last decade has shrunk, especially for networks and disks. However, the relative improvements in latency and capacity over that shorter time are still similar to the latency improvements over the longer time of Table 2.

Thus, using either the last two decades or just the more recent period, performance advances of these four disparate technologies is captured by the following rule of thumb:

In the time that bandwidth doubles, latency improves only by factors of 1.2 to 1.4.

Note that in performance-oriented versions of memory and storage, capacity approximately triples in the time that bandwidth doubles.

	Milestone
	1
	2
	3
	4
	5
	6

	Microprocessor
	16-bit address/bus, microcoded
	32-bit address/bus, microcoded
	5-stage pipeline, on-chip I & D caches, FPU
	2-way superscalar,
64-bit bus
	Out-of-Order, 3-way superscalar
	 Superpipelined, on-chip L2 cache

	Product
	Intel 80286
	Intel 80286
	Intel 80486
	Intel Pentium
	Intel
Pentium Pro
	Intel Pentium 4

	Year
	1982
	1985
	1989
	1993
	1997
	2001

	Latency (clocks)
	6
	5
	5
	5
	10
	22

	Bus width (bits)
	16 bits
	32 bits
	32 bits
	64 bits
	64 bits
	64 bits

	Clock rate (MHz)
	12.5
	16
	25
	66
	200
	1500

	Bandwidth (MIPS)
	2
	6
	25
	132
	600
	4500

	Latency (nsec)
	320
	313
	200
	76
	50
	15

	Memory Module
	DRAM
	Page Mode DRAM
	Fast Page Mode DRAM
	Fast Page
Mode DRAM
	Synchronous DRAM
	Double Data Rate SDRAM

	Module width
	16 bits
	16 bits
	32 bits
	64 bits
	64 bits
	64 bits

	Year
	1980
	1983
	1986
	1993
	1997
	2000

	Mbits/DRAM chip
	0.06
	0.25
	1
	16
	64
	256

	Bandwidth (MB/s)
	13
	40
	160
	267
	640
	1,600

	Latency (nsec)
	225
	170
	125
	75
	62
	52

	Local Area Network
	Ethernet
	Fast Ethernet
	Gigabit Ethernet
	10 Gigabit Ethernet
	
	

	IEEE Standard
	802.3
	802.3u
	802.3ab
	802.3ae
	
	

	Year
	1978
	1995
	1999
	2003
	
	

	Bandwidth (Mb/s)
	10
	100
	1000
	10000
	
	

	Latency (sec)
	2000
	500
	340
	190
	
	

	Hard Disk
	3600 RPM
	5400 RPM
	7200 RPM
	10000 RPM
	15000 RPM
	

	Product
	Fujitsu 2351A?
	Seagate ST41600
	Seagate ST15150
	Seagate ST39102
	Seagate ST373307
	

	Year
	1982?
	1990
	1994
	1998
	2003
	

	Capacity
	0.4 Gbytes?
	1.4 Gbytes
	4.3 Gbytes
	9.1 Gbytes
	73.4 Gbytes
	

	Disk diameter
	14 inch?
	5.25 inch
	3.5 inch
	3.5 inch
	3.5 inch
	

	Interface
	?
	SCSI
	SCSI
	SCSI
	SCSI
	

	Bandwidth (MB/s)
	2
	4
	9
	24
	62
	

	Latency (msec)
	35.6
	17.1
	12.7
	8.8
	5.7
	

Table 1. Performance Milestones in Bandwidth and Latency for Processors, Memory Modules, Local Area Networks, and Disks. [Hennessy][Lantz][Patterson] These are milestones for the performance-oriented versions of each technology. Where products are mentioned, the same manufacturer is used when possible in order to neutralize other variables. Processor features accumulate across milestones if not specifically mentioned otherwise. The processor clock rate is that at introduction. The processor latency is the typical number of pipeline stages or clock cycles for a simple instruction multiplied by the time per clock cycle. Although instruction latency is not usually visible to the programmer, the consequences of longer latency include longer recovery from mispredictions. Processor bandwidth is the peak rate of instructions per second. Memory milestones include the DRAM module width, which is driven by the width of the processor bus. DRAM modules are either single inline memory modules (SIMMs) or dual inline memory modules (DIMMs) and latency is estimated as the row access time (RAS) plus column access time (CAS). Network speed is judged as first year of each new Ethernet link speed standard. (We would get similar results if we used year of widespread deployment.) Network latency is one-way latency, including software overhead to send and receive. Disk latency includes time for one-half rotation plus one average seek. Disk bandwidth is the peak formatted data bandwidth from the media, not from the internal buffer or cache.

[image: image1.emf]1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

Bandwidth

Improve-

ment

Microprocessor

Memory

Network

Disk

(Latency improvement

= Bandwidth improvement)

Figure 1. Log-log plot of bandwidth and latency milestones from Table 1 relative to the first milestone. Note that latency improved about 10X while bandwidth improved about 100X to 1000X.

	
	Processor
	Memory Module
	LAN
	Disk

	 Annual Latency Improvement (all milestones)
	1.17
	1.07
	1.10
	1.09

	 Annual Capacity Improvement (all milestones)
	--
	1.52
	--
	1.28

	 Annual Bandwidth Improvement (all milestones)
	1.50
	1.27
	1.39
	1.18

	 Time for Bandwidth to Double in Years
	1.7
	2.9
	2.1
	4.2

	 Capacity Improvement in Time for Bandwidth to Double
	--
	3.4
	--
	2.8

	 Latency Improvement in Time for Bandwidth to Double
	1.3
	1.2
	1.2
	1.4

Table 2. Summary of Annual Improvements in Latency, Capacity, and Bandwidth in Table 1. The fourth row shows the time for bandwidth to double, the next row shows how much capacity improves in that time, and the last row shows latency improvement in that time. The small difference per year results in large difference per decade; using the smallest imbalance as an example, disk bandwidth improved by 5.2 per decade but disk latency improved only by 2.4. Capacity improvement for cost sensitive disks such as ATA is much higher than 1.28 per year, but we focus on performance-oriented technologies such as SCSI.

	
	Processor
	Memory Module
	LAN
	Disk

	 Annual Latency Improvement (last 3 milestones)
	1.22
	1.06
	1.13
	1.09

	 Annual Capacity Improvement (last 3 milestones)
	--
	1.49
	--
	1.37

	 Annual Bandwidth Improvement (last 3 milestones)
	1.55
	1.30
	1.78
	1.24

	 Time for Bandwidth to Double in Years
	1.6
	2.7
	1.2
	3.2

	 Capacity Improvement in Time for Bandwidth to Double
	--
	2.9
	--
	2.8

	 Latency Improvement in Time for Bandwidth to Double
	1.4
	1.2
	1.2
	1.3

Table 3. Summary of Annual Improvement in Latency, Capacity, and Bandwidth for the three most recent milestones in Table 1. Although bandwidth is improving faster more recently, the ratios of improvement for latency and capacity while bandwidth doubles are close to those in Table 2.

Reasons for Bountiful Bandwidth but Lagging Latency

“There is an old network saying: Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed--you can't bribe God.” Anonymous

There are five technical reasons and one marketing reason why performance advances are skewed towards bandwidth.

1. Latency helps bandwidth. Technology improvements that help latency usually also help bandwidth, but not vice versa. For example, spinning disks faster reduces the rotational latency, but the read head must read data at the new faster rate as well. Thus, spinning the disk faster improves both bandwidth and rotational latency. However, increasing the linear density of bits per inch on a track helps bandwidth but offers no help to latency.
2. Bandwidth hurts latency. It is often easy to improve bandwidth at the expense of latency. Queuing theory quantifies how longer buffers help bandwidth but hurt latency. As a second example, adding chips to make a memory module wider increases bandwidth but the higher fan-out on the address lines may increase latency.

3. Distance limits latency. Distance sets a lower bound to latency. The delay on the long word lines and bit lines are the largest part of the of the row access time of a DRAM. The speed of light tells us that if the other computer on the network is 300 meters away, its latency can never be less than one microsecond.

4. Moore’s Law helps bandwidth more than latency. The scaling of semiconductor processes provides both faster transistors and many more on a chip. Moore’s Law predicts a periodic doubling in the number of transistors per chip, due to scaling and in part to larger chips; recently, that rate has been 22 to 24 months. [Ross] The faster transistors help latency but the larger number of transistors and larger chips limit the benefits of scaling to latency. Since chips have gone to area pads, larger area allows a corresponding larger number of pins. Bandwidth, on the other hand, is helped by faster transistors plus more transistors and more pins operating in parallel.

5. Software overhead hurts latency. A user program that wants to send a message invokes the operating system, which then invokes a network driver before hardware is accessed. This overhead is amortized over large messages, and thus plays a smaller role in bandwidth, but it can be large part of the latency for short messages.

6. Bandwidth is easier to sell. The non-technical reason that latency lags bandwidth is the marketing of performance: it is easier to sell higher bandwidth than to sell lower latency. For example, the benefits of a 10 gigabit per second bandwidth Ethernet are likely easier to explain to customers today than a 10 microsecond latency Ethernet, no matter which actually provides better value. You can argue that greater advances in bandwidth led to marketing techniques to sell it which in turn trained customers to desire it, but no matter what the real chain of events, unquestionably bandwidth is easier to sell today. Since bandwidth sells, engineering resources tend to be thrown at bandwidth, which further tips the balance.

These six reasons help explain why bandwidth has outstripped latency since 1980, and why I expect it to continue. Although there may well be innovations that make a one-time reduction in latency in a given technology, I believe they will occur within the context of unrelenting improvement in bandwidth.

Coping with Bountiful Bandwidth but Lagging Latency

Despite this imbalance, latency remains important for the interactive applications either on the desktop or across a network: a quick and predictable user interaction time is critical to productivity. [Hennessy]

The bandwidth-latency imbalance may not be a problem that can be solved in each technology; it may instead be a fact with which we must cope in bringing about a more balanced systems. Below are several techniques that have been developed over the years to cope with this imbalance. In fact, yet another reason for this trend may be the relative difficulty of hiding bandwidth shortages versus the plausibility of hiding some latency using techniques like caching.
1. Caching: Leveraging Capacity to Help Latency. Processors first added caches to overcome the long latency to memory, relying on locality of reference to allow a small fast memory to capture most accesses. About half of the area of today’s large microprocessor chips is for caches. File systems routinely use a large fraction of today’s large main memory to act as a file cache to try to avoid going to disk, and disks today include caches of a few megabytes to try to avoid access the disk surface.
2. Replication: Leveraging Capacity to Help Latency. The increase in capacity of memory and storage makes affordable copies of data to reduce latency. Thus, internet service providers often use multiple sites spread across the country in part to reduce the network latency to users. Storage systems duplicate data for dependability may also read the copy that is closest to the disk read head to reduce latency. Multiprocessors replicate data in their caches to avoid long latency and potential bottlenecks of sharing single copies of data.
3. Parallelism and Out-of-Order Processing: Leveraging Bandwidth to Help Latency. One way to take advantage of many tasks is to perform them in parallel in the order that they are ready to be processed rather than in the order that they were requested. Thus, some networks allows packets to be delivered out of order, disk controllers process requests in the order that reduces head movement, and today’s processors will execute other instructions instead of waiting during stalls of prior instructions.
4. Prediction: Leveraging Bandwidth to Help Latency. Rather than wait until the computer knows what it wants, designers are increasingly using techniques that guess in advance and continue with high performance when they guess correctly. Thus, processors predict early whether a branch is taken, and processors, caches, memory, and disk controllers prefetch data.
In addition to coping with relatively higher latency, we should consider new ways to engineer systems with lower latency. The imbalance in these four technologies is a result in part of design decisions and engineering investments. For each of these technologies, it may be possible to improve latency at either higher costs or by lowering bandwidth a little, which we have in excess. For example, DRAM blocks and interfaces could be redesigned to emphasize latency at higher cost per Mbit, and SCSI disks already demonstrate higher performance than ATA disks at higher cost per gigabyte. The difficulty of marketing of latency innovations is one of the six reasons why latency has received less attention thus far, and this obstacle must be addressed if we are to feature latency. Perhaps we can draw inspiration from the more mature automotive industry, which advertises time to accelerate from 0 to 60 miles per hour in addition to horsepower and top speed.

Note that these four approaches are not panaceas, as they all have their drawbacks. Caches can have high miss rates, keeping replicas coherent is complicated and may need a great deal of communication, reassembly of out-of-order tasks can be error-prone and expensive, and predictions require recovery mechanisms and can interfere with performance when they are wrong. Nevertheless, the work more often than they don’t.

Speaking optimistically, these four techniques should increase in popularity to cope with performance advances that emphasize bandwidth over latency. Speaking pessimistically, such techniques are now fully deployed and it may be much harder to find the next set of tricks. Thus, the bandwidth-latency imbalance may be even more evident in the future.

Summary

If everything improves at the same rate, then nothing really changes. When rates vary, we see real dislocation that in turn requires real innovation. To cope with the varying rates of improvement of bandwidth and latency, thus far we have used techniques such as caching, replication, parallelism and out-of-order processing, and prediction.

Hardware and software innovators may want look across disciplines to find techniques that can turn bandwidth into useful performance, as the increasing imbalance requires invention. Since processors are often the first to run into these obstacles, they have been a rich source of inspiration for others. To try to cope with further imbalance, processor designers have considered predicting the value of an operand before it is calculated in order to let computation to proceed. Latency to memory is approaching the time to execute a thousand instructions, so we may see techniques like recalculation instead of going to memory to fetch a value. Perhaps such exotic solutions in will inspire novel approaches in other technologies.

In conclusion, since 1980 we have seen rapid performance advances in processors, memories, networks, and disks. However, bandwidth has improved much more than latency: in the time that bandwidth doubled, latency improved only by factors of 1.2 to 1.4. I expect this ratio of bandwidth-latency advances will hold for the foreseeable future. Hardware and software developers should plan accordingly.

Acknowledgements

Drafts of this paper benefited from comments by Gordon Bell, Doug Clark, John Fowler, Armando Fox, Jim Gray, Mark Hill, John Hennessy, John Ousterhout, and John Wawrzynek.

References

John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, Morgan Kauffman Publishers, San Francisco, 1990, 1996, 2003. (Most of the historical data in Table 1 comes from the three editions of this book.)

Matthias Gries, “A Survey of Synchronous RAM Architectures.” Computer Engineering and Networks Laboratory (TIK) 71, ETH Zurich, April 1999.

Edward Grochowski and Robert Halem, “Technological impact of magnetic hard disk drives on storage systems.” IBM Systems Journal, vol. 42, no. 2, July, 2003, pp. 338-346.

Keith Lantz, William Nowicki, and Marvin Theimer. “Factors affecting the performance of distributed applications.” Proceedings of SIGCOMM '84 Symposium on Communications Architectures and Protocols, pages 116-123. ACM, June, 1984.
David Patterson and John Hennessy, Computer Organization and Design: The Hardware/Software Interface, Morgan Kauffman Publishers, San Francisco, 1994, 1998, 2004. (Some historical data in Table 1 comes from the three editions of this book.)

Philip Ross, “5 Commandments of Engineering,” IEEE Spectrum, December 2003.

Draft 3.0
Please Do Not Distribute Widely
Page 1

