
1/14/2003

1

Crash-Only Software

George Candea and Armando Fox

Stanford University

2 George Candea

Motivation

Software bugs
a main source of unplanned downtime*

most are intermittent/transient

Fine-grain reboot:
easy
effective
more or less predictable

Need high confidence, simple, well-defined failure
semantics

*[Adams’84], [Gray’86], [Murphy’95], [Chou’97], [Murphy’99], [Gartner’99], [Gartner’01]

3 George Candea

Potpourri of Restarts
Impractical to guarantee zero crashes programs must be crash-safe
anyway

Occam’s Razor why have more than one type?
Performance (no synch writes in FS need to flush buffer cache)

You want fast systems or HA systems ???
Performance quest frail systems

Leave performance improvements to Moore’s Law

Crashes are sometimes
faster, modulo data loss
(WinXP crash reboots for
upgrades)

Crash-only software must:
(a) be crash-safe & (b) recover quickly

4 George Candea

What Is Crash-Only SW ?
Crash-only component has PWR switch: stop=crash

clean shutdown

loss of power

kernel panic

cure transient failure

Only one way to go down only one way to come up: start = recover

Each component must has a PWR switch uniform behavior

Crash-only system = assembly of crash-only components;
system PWR switch implemented in terms of components' switches

PWR switch is external, does not invoke component code, just like

kill -9 for a UNIX process

turning off the VM in which a subsystem is running

pulling a cluster node's power cable out of the wall

5 George Candea

Outline

Overview

Requirements for Crash-Only Internet Systems

Benefits of Crash-Only Designs

6 George Candea

What Do We Call Internet Systems ?

Large scale + HA requirements

Heterogeneous, individually packaged components
(web servers, application servers, databases, etc.)

Rapid and perpetual evolution difficult to build and maintain consistent model
(key difference from other mission-critical apps)

Workload = large numbers of relatively short tasks, rather than long-running
operations

Request-reply protocols (e.g., web browsers talking HTTP)

Single installs (one data center), no WAN

Prescriptive (CS) vs. descriptive (Physics) laws

1/14/2003

2

7 George Candea

Concrete Requirements

Crash-only = crash-safety + fast recovery

Intra-component state management:
1. Persistent state is managed by dedicated stores

2. State stores are crash-only

3. Abstractions provided by state store match app’s requirements

Extra-component interactions:
1. Components are modules with externally enforced boundaries

2. Timeout-based communication and lease-based resource allocation

3. TTL and idempotency information carried in requests

8 George Candea

1. Persistent State Managed by State Stores

State management ≠ application logic

What is application state?
application state (user data, control structures, etc.)

resources (file descriptors, kernel data structures, etc.)

Persistent application state lives in dedicated crash-only state
stores (DB, NetApp filer, middle-tier persistence layer, etc.)

Apps become free of persistent state (“stateless”)

Example: three-tier Internet architectures

Benefit: simpler recovery code for app; state store can be clever
about transitioning from one consistent state to another

9 George Candea

2. State Stores Are Crash-Only

Don’t push problem one level down

COTS crash-safe state stores: DB’s, NASD’s

Tunable COTS state stores: Oracle DB

True crash-only state stores: Postgres
No WAL, one append-only log

Almost instantaneous recovery: mark in-progress txn’s failed

10 George Candea

3. State Store Abs == App Abstractions

Persistent state is in stores, so store needs API;
all ops on persistent state done through high-level API

State store abstractions == app-desired abstractions;
app should operate on state at its own semantic level

Example: store customer records in DB, not file system

Benefit: state store can exploit app semantics and workload
characteristics to offer performance and fast recovery

Berkeley DB: 4 abstractions, 4 APIs

11 George Candea

Trend toward Standardization

Few, specialized state stores:
Transactional ACID (customer data DB)

Simple read-only (static web pages & GIFs NetApp)

Non-durable single-access (user session state)

Soft state store (web cache)

12 George Candea

1. Strong Fault Containment Boundaries

Components = Modules with externally enforced boundaries

Isolation achieved using
Virtual machines (e.g., VMware)

Isolation kernels (e.g., Denali)

Java tasks (e.g., Sun’s MVM)

OS processes

Example: Ensim and other web service hosting providers

Staged processing, isolated stages (e.g., HTTP request)

1/14/2003

3

13 George Candea

2. Timeouts and Leases

All communication (RPC or messages) has timeouts
fail-fast behavior for non-Byzantine faults

Everything is leased, never permanently bound
reduce coupling (persistent state + resources)

Maximum timeout specified in app-global policy

Benefit: system never gets stuck

14 George Candea

3. TTLs and Idempotency Flag in Requests

Every request traveling through system
carries a context that includes:

idem: is operation idempotent ?

time-to-live, after which invoker will
assume request has failed (TTL updated at
each stage)

Many interesting requests are idempotent
or can be easily be made idempotent
(sequence #’s, txn’s)

Benefits
sub-request failures are “atomic”

request stream is restartable/recoverable

idem = TRUE
TTL = 20

idem = FALSE
TTL = 10

idem = TRUE
TTL = 10

parent

child

child

15 George Candea

A Restart/Retry Architecture

Glues crash-only components into crash-only systems

Components that aren’t making satisfactory progress or fail get crash-restarted
Based on timeouts and/or progress counters = compact representation of progress (e.g., HTTP reply stage)
Counters live behind state store and messaging APIs; map state access/messaging activity into per-
component progress
Components can implement counters capturing app semantics, but are less trustworthy

Requestor stub infers failure from timeout or RetryAfter(n) exception

Component restart = transient failure,
caller resubmits idempotent requests if enough time left request stream recovers transparently

Worst case: propagate failure or HTTP/1.1 Retry-After to the client

idem = TRUE
TTL = 2,000

idem = TRUE
TTL = 1,900

idem = TRUE
TTL = 1,900

idem = TRUE
TTL = 700

http://amazon.com/viewcart/103-55021-2566

web srv

app srv

file srv

database

16 George Candea

Benefits

Fewer undefined states

Robust recovery: exercising recovery code on every startup
KLOC/system up faster than bugs/KLOC down more bugs, software will
fail more often, hence need to recover more often

Transparent sub-system recovery continuity of service

Can coerce all non-Byzantine failures into a crash simple crash-
based fault model easier to write correct recovery code

Software rejuvenation = preemptive reboot to stave of failure (most
effective when using crash, because clean shutdown might not release
all resources)

Trivial migration of tasks (failover, load balancing, reconfiguration) =
crash on one node, recovery on the other

Zero-downtime partial system upgrades = crash old component,
recover new one

17 George Candea

Recursive Restarts for HA

We have crash-only components – now what?

Reduce recovery time by doing partial restarts: attempt
recovery of a minimal subset of components

What if restart ineffective?
recover progressively larger subsets

Chase fault through successive
boundaries

Demonstrated 4x improvement in recovery time on Mercury
(stateless, crash-safe satellite ground station)

18 George Candea

Ongoing and Future Work
Crash-only software: one way to go down, one way to come up

To study:
emergent properties
not all operations are idempotent (needed for “execute at least
once”)
Limited to request/reply systems (e.g., interactive desktop apps might
not work)

Implement on open-source J2EE app srv – RR-JBoss crash-only
Separate J2EE services into separate components
Associate contexts with each request
Timeout-based RMI (Ninja?) and lease-based allocation

Crash-only app: ECperf

Automatic recursive restarts based on f-maps

1/14/2003

4

19 George Candea

More…

http://http://RR.stanford.eduRR.stanford.edu

