George Candea and Armando Fox

Stanford University

Motivation

m Software bugs
e a main source of unplanned downtime*
e most are intermittent/transient

m Fine-grain reboot:
e easy
o effective
e more or less predictable

= Need high confidence, simple, well-defined failure
semantics

*(Adams 84), [Gray 86, [Murphy '95), [Chou'97), [Murphy '99), [Gartner'99), [Gartner'01]

George Candea

Potpourri of Restarts

= Impractical to guarantee zero crashes - programs must be crash-safe
anyway
= Occam'’s Razor - why have more than one type?
e Performance (no synch writes in FS - need to flush buffer cache)

= You want fast systems or HA systems ???
e Performance quest - frail systems
e Leave performance improvements to Moore’s Law

What Is Crash-Only SW ?

begin sys stopped. initiakzanon
shsgen bogin it cergict
m Crashes are sometimes clean restart - -
faster, modulo data loss
(WinXP crash reboots for Lakier dably g
upgrades)
crash restart . -
erash recovery
bagn rocovery complian

Crash-only software must:
(a) be crash-safe & (b) recover quickly

& 5 George Candea

m Crash-only component has PWR switch: stop=crash
e clean shutdown
e loss of power
e kernel panic
e cure transient failure

= Only one way to go down - only one way to come up: start = recover
m Each component must has a PWR switch - uniform behavior

m Crash-only system = assembly of crash-only components;
system PWR switch implemented in terms of components' switches

= PWR switch is external, does not invoke component code, just like
= kill -9 for a UNIX process
= turning off the VM in which a subsystem is running

= pulling a cluster node's power cable out of the wall

& % George Candea

Outline

]
m Requirements for Crash-Only Internet Systems

m Benefits of Crash-Only Designs

What Do We Call Internet Systems ?

m large scale + HA requirements

= Heterogeneous, individually packaged components
(web servers, application servers, databases, etc.)

= Rapid and perpetual evolution - difficult to build and maintain consistent model
(key difference from other mission-critical apps)

= Workload = large numbers of relatively short tasks, rather than long-running
operations

= Request-reply protocols (e.g., web browsers talking HTTP)

= Single installs (one data center), no WAN

= Prescriptive (CS) vs. descriptive (Physics) laws

ﬁ_ . ceorge Condea

Concrete Requirements

m Crash-only = crash-safety + fast recovery

= Intra-component state management:
1. Persistent state is managed by dedicated stores
2. State stores are crash-only
3. Abstractions provided by state store match app’s requirements

m Extra-component interactions:
1. Components are modules with externally enforced boundaries
2. Timeout-based communication and lease-based resource allocation
3. TTL and idempotency information carried in requests

& , George Canden

1. Persistent State Managed by State Stores

= State management # application logic

m What is application state?
e application state (user data, control structures, etc.)
e resources (file descriptors, kernel data structures, etc.)

m Persistent application state lives in dedicated crash-only state
stores (DB, NetApp filer, middle-tier persistence layer, etc.)

m Apps become free of persistent state (“stateless”)
m Example: three-tier Internet architectures

m Benefit: simpler recovery code for app; state store can be clever
about transitioning from one consistent state to another

2. State Stores Are Crash-Only

Don't push problem one level down

COTS crash-safe state stores: DB’s, NASD's

Tunable COTS state stores: Oracle DB

True crash-only state stores: Postgres
e No WAL, one append-only log
e Almost instantaneous recovery: mark in-progress txn’s failed

& 4 George Candea

3. State Store Abs == App Abstractions

m Persistent state is in stores, so store needs API;
all ops on persistent state done through high-level API

m State store abstractions == app-desired abstractions;
app should operate on state at its own semantic level

m Example: store customer records in DB, not file system

m Benefit: state store can exploit app semantics and workload
characteristics to offer performance and fast recovery

m Berkeley DB: 4 abstractions, 4 APIs

& i George Candea

Trend toward Standardization

m Few, specialized state stores:
e Transactional ACID (customer data > DB)
e Simple read-only (static web pages & GIFs > NetApp)
e Non-durable single-access (user session state)
e Soft state store (web cache)

1. Strong Fault Containment Boundaries

m Components = Modules with externally enforced boundaries

m Isolation achieved using
e Virtual machines (e.g., VMware)

e Isolation kernels (e.g., Denali)
e Java tasks (e.g., Sun’s MVM)
e OS processes

= Example: Ensim and other web service hosting providers

m Staged processing, isolated stages (e.g., HTTP request)

& " George Condea

2. Timeouts and Leases

All communication (RPC or messages) has timeouts
- fail-fast behavior for non-Byzantine faults

Everything is leased, never permanently bound >
reduce coupling (persistent state + resources)

m Maximum timeout specified in app-global policy

m Benefit: system never gets stuck

George Candea

3. TTLs and Idempotency Flag in Requests

m Every request traveling through system
carries a context that includes:
e idem: is operation idempotent ?

idem = TRUE
TTL = 20

e time-to-live, after which invoker will
assume request has failed (TTL updated at
each stage)

= Many interesting requests are idempotent
or can be easily be made idempotent
(sequence #'s, txn's)
m Benefits
e sub-request failures are “atomic”
e request stream is restartable/recoverable

George Candea

database

103-55021-2566

m Glues crash-only components into crash-only systems

= Components that aren’t making satisfactory progress or fail get crash-restarted
© Based on timeouts and/or progress counters = compact representation of progress (e.g., HTTP reply stage)
© Counters live behind state store and messaging APIs; map state access/messaging activity into per-
component progress
© Components can implement counters capturing app semantics, but are less trustworthy
m Requestor stub infers failure from timeout or RetryAfter(n) exception

= Component restart = transient failure,
caller resubmits idempotent requests if enough time left > request stream recovers transparently

= Worst case: propagate failure or HTTP/1.1 Retry-After to the client

& e George Candea

Benefits

= Fewer undefined states

= Robust recovery: exercising recovery code on every startup
e KLOC/system up faster than bugs/KLOC down - more bugs, software will
fail more often, hence need to recover more often
m Transparent sub-system recovery - continuity of service

= Can coerce all non-Byzantine failures into a crash > simple crash-
based fault model - easier to write correct recovery code

= Software rejuvenation = preemptive reboot to stave of failure (most
effective when using crash, because clean shutdown might not release
all resources)

= Trivial migration of tasks (failover, load balancing, reconfiguration) =
crash on one node, recovery on the other

m Zero-downtime partial system upgrades = crash old component,
recover new one

& i George Candea

Recursive Restarts for HA

We have crash-only components — now what?

Reduce recovery time by doing partial restarts: attempt
recovery of a minimal subset of components

m What if restart ineffective?
recover progressively larger subsets

Chase fault through successive
boundaries

m Demonstrated 4x improvement in recovery time on Mercury
(stateless, crash-safe satellite ground station)

George Candea

N

Ongoing and Future Work

m Crash-only software: one way to go down, one way to come up

m To study:
e emergent properties

e not all) operations are idempotent (needed for “execute at least
once”,

e Limited to request/reply systems (e.g., interactive desktop apps might
not work)

= Implement on open-source J2EE app srv — RR-JBoss crash-only
e Separate J2EE services into separate components
e Associate contexts with each request
e Timeout-based RMI (Ninja?) and lease-based allocation

m Crash-only app: ECperf

= Automatic recursive restarts based on f-maps

George Candea

More...

http://RR.stanford.edu

