
1/14/2003

1

Automatic Failure-Path Inference

George Candea, Mauricio Delgado, Michael Chen,

Fang Sun, Armando Fox, Pedram Keyani

Stanford University
2 George Candea

Recursive Restarts for HA

We have crash-only components – now what?

Reduce recovery time by doing partial restarts: attempt
recovery of a minimal subset of components

What if restart ineffective?
recover progressively larger subsets

Chase fault through successive
boundaries

Demonstrated 4x improvement in recovery time on Mercury
(stateless, crash-proof satellite ground station)

How do we navigate the fault boundaries? ...

3 George Candea

Fault Dependency Graph

Use a graph that depicts how faults propagate in the system (f-map)

Challenges:
1. Problem-determination literature assumes graph is magically available

2. Internet systems evolve rapidly hard to keep sys and graph in sync

3. Many failures result from idiosyncratic system/environment interactions,
which can't be guessed just by looking at the app

Desired process properties:
don’t use explicit model

application generic/independent

automatic

dynamic

4 George Candea

Automatic Failure-Path Inference

Look at what people do: train by placing themselves in unexpected
situations; self-managing systems should do the same introspection

1. Staging phase (active/invasive):
inject faults

observe system's reaction

add inferred propagation paths to global failure propagation map

2. Production phase (passive/orthogonal):
observe system's reaction to "naturally occurring" faults

augment failure propagation map

Staging Production

deploy

minor fixes,
reconfigs

major upgrades

5 George Candea

Staging Phase Algorithm
1. Bring system up (infrastructure and application)

2. Each deployment of a component inspect its interface and infer possible application-visible
faults; place potential faults in a global fault list

3. Add environment-related faults (e.g., network partitions, disk I/O faults, out-of-memory)

4. Iterate through list of (component C, method M, fault F) and
schedule fault F to be raised by C on invocation of M

5. Generate workload externally to exercise system

6. As components fail, build f-map = directed graph of edges (u,v) indicating that a fault in
component u propagated and caused component v to fail (if v handles fault, then no edge)

7. Save f-map and fault list to stable storage, restart app, continue with the next (C,M,F) triplet

Injection ends when entire list of faults has been exhausted

Multi-point injections (truly independent faults are seldom in reality):
1. Take cross product of list of faults with itself and obtain (C1, M1, F1, C2, M2, F2)
2. Eliminate tuples that have C1=C2
3. Iterate through list and inject faults
4. Add previously unseen paths to f-map

6 George Candea

Internet Systems / J2EE

J2EE enterprise apps = collection of reusable Java modules

JSPs / servlets invoke EJBs, which invoke other EJBs, ...

EJB = Java component that complies to a certain interface and
provides a service

Deployment descriptor (XML file) conveys run-time characteristics and
dependencies; used in deploying the application

App srv = operating system for Internet applications (instantiates app
components in containers, provides runtime system services,
integrates with web server to make app web-accessible)

We use JBoss (open-source J2EE app srv) = microkernel with
components held together through JMX

Large scale + HA requirements

Heterogeneous, individually
packaged components
(web servers, application
servers, databases, etc.)

Rapid and perpetual evolution
impossible to build and

maintain consistent model (key
difference from other mission-
critical apps)

Workload = large numbers of
relatively short tasks, rather
than long-running operations

Clients are web browsers talking
HTTP

1/14/2003

2

7 George Candea

Modifications (JBoss RR-JBoss)

1. Include 2 new JMX services for injection and monitoring:
FaultInjector and FailureMonitor

2. Add hook: whenever a new EJB is deployed, FaultInjector is
invoked, to reflect EJB interface and populate list w/ exceptions

3. Modify generic EJB container to provide method for scheduling
a fault

4. Modify EJB container's log interceptor to capture stack trace
when exception is thrown, parse it, and inform FailureMonitor

8 George Candea

Experiments
PetStore 1.1.2

freely available J2EE “tutorial application” from Sun
simulates e-commerce site w/ user accounts, profiles, payments,
merchandise catalog, shopping cart, purchases, etc.

Derive vanilla f-map from deployment descriptors

Chose to inject Java exceptions = high level, JVM-visible faults
low-level bit flips nondeterministic behavior
most manifest low-level problems turn into Java exceptions

Two types of exceptions:
“expected” : declared in bean interfaces
“environmental” : resulting from runtime issues
(OutOfMemoryError, StackOverflowError, IOException,
RemoteException, SQLException)

9 George Candea

Comparing f-maps

Are our f-maps at least
as good as those
obtained by other means?

If yes, are they better ?

Missing edges:

AccountEJB OrderEJB: maintained
reference, but never used it

CatalogEJB ShoppingClientCtlEJB:
didn't even have reference

EStoreDB web tier: only exercised
at DB population time

Additional nodes + edges:

HttpJspBase, MainServlet, 6 JSPs:
higher resolution, dissected web tier

Automatic FPI

Deployment Descriptors

10 George Candea

Fault-Specific f-maps

Zoom in on dependencies resulting from a specific fault or class of faults

Targeted recovery when we know the fault that occurred

f-map obtained by injecting exclusively app-declared exceptions
reflects what happens when we isolate it from the environment

Much simpler (thus more useful) f-map
some components missing (ProfileManagerEJB, OrderEJB, InventoryEJB) so
no propagation through them

11 George Candea

Discussion

AFPI required no application knowledge

No performance overhead (we’re faster, but that’s noise:
94.8 sec vanilla JBoss vs. 93.0 sec RR-JBoss, with 5.8 std. dev.)

Deployment descriptors can be incorrect;
even if correct, will capture paths that might manifest, not only the
ones that do manifest

Use a true call graph tool ? PetStore has 233 Java files w/ 11 KLOC;
descriptors are 16 files with 1.5 Klines of XML

Call graph:
might manifest vs. do manifest
misses paths that are not due to calls (e.g., memory-gobbling thread)
static call graph need to regenerate every time you change app
requires access to source code

12 George Candea

Summary

Automatic Failure-Propagation Inference:
+ automatically and dynamically generates f-maps with no

performance overhead

+ no application knowledge required

+ finds dependencies that other analyses might miss,
omits dependencies that don’t manifest

+ accommodates app evolution

+ obtain high-resolution per-fault-type graphs

- staging phase may take a long time

1/14/2003

3

13 George Candea

Future Work

Make RR-JBoss crash-only
Separate J2EE services into separate components

Include J2EE services in f-maps

More complex apps: ECperf (alternately Trade-2,
TPC-W, Nile)

Automatic recursive restarts based on f-maps

14 George Candea

More…

http://http://RR.stanford.eduRR.stanford.edu

