Evaluation of a Microrebootable System

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox

-- Stanford University --

μ RB and Crash-Only Design

- reboot-curable failures
- microreboot at the component level:
 - correct recovery
 - localized + contained recovery
 - fast + correct reintegration into running system
- crash-only design to enable μRB -ing:
 - state segregation (DB, SSM, ...)
 - componentization
 - fine grain resource reclamation

Prototype

- μRB-enabled JBoss (comps = EJBs) using MySQL and extended SSM
- RUBiS: online auction app (132K items, 1.5M bids, 100K users)
- Fault injection: null references
 - deadlocks, infinite loops
 - corruption of volatile metadata
 - resource leaks
 - Java exceptions and errors
- Client-side detection + automated recovery

Preview

- µRB-ing vs. FRB-ing on a single node
- µRB-ing complements cluster-based solns.
- Fast recovery tolerates sloppy fault det.
- Microrejuvenation averts failure at low cost
- Insignificant performance impact (1%)

The Gaw Metric

- Goodput x time is not good enough:
 - partial failure can improve metric
 - does not capture user actions
- Action-weighted goodput (Gaw):
 - user session = login ... logout (or abandon)
 - user action = op, op, ..., commit point
 - user actions are atomic
- Emulate 350 clients w/ eBay-like workload

FRB vs. μ **RB: Gaw**

FRB vs. μ **RB: Goodput**

Gaw Dip (Zoom in)

Recovery Unit Size

Component	Ave	Min	Max
Jboss restart (JVM)	51800	49000	54000
RUBiS restart (app)	11679	7890	19225
SB_CommitBid	286	237	520
SB_BrowseCategories	340	277	413
•••••	• • •	• •••	• •
SB_SearchItemsByCategory	911	488	3019
IDManager	1059	663	1547
UserFeedback	1248	761	1591
BuyNow	1421	668	4453
User-Item	1828	876	4636

>>> order of magnitude © 2004 George Candea

Performance Recovery Time

Performance Recovery Time

- 10-sec reboot + 1-minute recovery
- 8 sec threshold for interactivity

Failure Containment

- solid line = activity gap=no activity
- Causes: no requests, site down, etc.

Failure Containment

Service Functionality Availability (MICROREBOOTS)

Time [minutes]

Cluster Setup

Aggregate Gaw

Failover loads good node w/ 700 clients response time > 8 sec

Failover loads good node w/ 700 clients response time > 8 sec

Avoiding Failover Altogether

- SSM not used
- Load bal. fails orphaned sess. right away

Avoiding Failover Altogether

95% (always uß prior to failover ?)

- SSM not used
- Load bal. fails orphaned sess. right away

Avoiding Failover Altogether

Failover is coarser than uRB-ing recovery isolation enables partial avail.

Lax Failure Detection

- Can uRB-ing be cheap enough to employ at the slightest hint of failure ?
- 2 ways we can relax failure detection:
 -- more false positives
 -- longer FD time (think longer)
- false negatives not a problem for us

Delayed Detection/Reporting

IMPACT OF TIME-TO-TRIGGER-RECOVERY

0 sec w/ FRB = 53 sec w/ uRB
 -->enable more accurate diagnosis

Increased False Positive Rate

0% FP rate w/ FRB = 97.2% FP rate w/ uRB
 --> enable faster detection

Why Prophylactic Rebooting ?

Full Rejuvenation

Microrejuvenation

Full vs. Microrejuvenation

unplanned total downtime ---->

planned partial downtime

Performance Overhead

		JBoss 3.2.1 w/	uRB-JBoss w/	JBoss 3.2.1 w/
		HttpSession-RUBiS	SSM-RUBiS	SSM-RUBiS
Throughput [req/sec]		44.8	44.5	44.4
Latency [msec]	Avg	39	82	83
	Мах	826	1245	1097
	StDev	0.066	0.131	0.142

- 150 clients/node: latency=38 msec (3 -> 7 nodes)
- Human-perceptible delay: 100-200 msec
- Auction site: 41 req/sec, 33-300 msec latency

Summary of Results

- uRB-ing has many of FRB's recovery properties
- uRB is order-of-magnitude less disruptive
- always uRB prior to failing over in clusters
- cheap recovery simplifies detection (97% FP)
- rejuvenate system w/out ever shutting down
- insignificant performance cost: 1%

http://crash.stanford.edu