
1

Profiling and diagnosing
large-scale decentralized systems

David Oppenheimer

ROC Retreat
Thursday, June 5, 2003

2

Why focus on P2P systems?
• There are a few real ones

– file trading, backup, IM
• Look a lot like other decentralized wide-area sys.

– Grid, sensor networks, mobile ad-hoc networks, …
• Look a little like all wide-area systems

– geog. dist. Internet services, content distribution. networks,
federated web services, *@home, DNS, BGP, …

• Good platform for prototyping services that will
eventually be deployed on a large cluster (Brewer)

• P2P principles seeping into other types of large
systems (corporate networks, clusters, …)

– self-configuration/healing/optimization
– decentralized control

• Large variability (in configurations, software
versions, …) justifies a rich fault model

3

Why focus on P2P systems? (cont.)
• This is NOT about the DHT abstraction
• DHT research code just happens to be the
best platform for doing wide-area networked
systems research right now

4

What’s the problem?
• Existing data collection/query and fault injection
techniques not sufficiently robust and scalable
for very large systems in constant flux
⇒goal: enable cross-component decentralized sys. profiling
– decentralized data collection
– decentralized querying
– online data collection, aggregation, analysis

• Detecting and diagnosing problems is hard
⇒goal: use profile/benchmark data collection/analysis

infrastructure to detect/diagnose problems (< TTD/TTR)
⇒observation: abnormal component metrics (may) indicate

an application or infrastructure problem
– distinguishing normal from abnormal per-component and

per-request statistics (anomaly detection)

5

Benchmark metrics
• Visible at user application interface

– latency, throughput, precision, recall
• Visible at application routing layer interface

– latency and throughput to {find object’s owner, route msg
to owner, read/write object}, latency to join/depart net

• Cracking open the black box
– per-component and per-request consumption of CPU,

memory, net resources; # of requests component handles;
degree of load balance; # of replicas of data item

• Recovery time, degradation during recovery
– recovery time broken into TT{detect, diagnose, repair}

• Philosophy: collect fine-grained events,
aggregate later as needed

aggregateaggregateacross all requests
aggregatecollectper-request
across all componentsper-component

6

Querying the data: simple example
(SQL used for illustration purposes only)

x1
x1
x1

nodeID

……
10:0.012
5:0.181
timereq id

KS KR

SELECT avg(KR.time-KS.time)
FROM KR, KS
WHERE KR.id = KS.id AND

nodeID = x1

0:0.50

x1
x1
x1

nodeID

……
10:0.912
5:0.281
timereq id

app-level request sends app-level response receives

application

DHT storage

node x1

routing routing

application

DHT storage
routing

node x2 node x3 node x4

routing

7

Schema motivation
• Popular programming model is stateless
stages/components connected by message
queues
– “event-driven” (e.g., SEDA), “component-based,” “async”

• Idea: make the monitoring system match
– record activity one component does for one request

» starting event, ending event

• Moves work from collection to query time
– this is good: slower queries are OK if means monitoring

won’t degrade the application

log

8

Monitoring “schema”
(tuple per send/rcv event)

> 4arguments

256message contents
4return value

8msg size
8time msg sent/received
4request type
4component sequence #
16global request id
8my component id
4my component type
4my node id
1operation type (send/receive)
bytesdata item

4net consumed this msg
4disk consumed this msg
4CPU consumed this msg
4memory consumed this msg
4peer component id
4peer node id
bytesdata item

(send table only)

What is data rate? [10k-node system, 5k req/sec]
» ~28 msgs/req * 5000 req/sec = 140,000 tuples/sec (=>14tps/node)
» ~50B/tuple * 140,000 tuples/sec = ~53 Mb/sec (=>5.5 Kbps/node)

9

Decentralized metric collection

data collect.
agent

local storage
routing

application

DHT storage
routing

“I sent
req 4 at
10 AM”

10

• Version 0 (currently implemented)
– log events to local file
– fetch everything to querying node for analysis (scp)

• Version 1 (use overlay, request data items)
– log events to local store (file, db4, …)
– querying node requests data items for local processing

using “sensor” interface
– key could be query ID, component ID, both, other…
– overlay buys you self-configuration, fault-tolerance,

network locality, caching
– two modes

» pull based (periodically poll)
» push based (querying node

registers continuously-running
proxy on queried node(s))

Querying the data

desired data

11

Querying the data, cont.
• Version 2 (use overlay, request predicate results)

– log events to local store (file, db4, …)
– querying node requests predicate results from end-nodes

» queried node can filter/sample, aggregate, …, before send results
» allows in-network filtering, aggregation/sampling, trigger
» can use to turn on/off collecting specific metrics, nodes,

or components
» SQL translation: push SELECT and WHERE clauses

– two modes
» pull based
» push based

• Goal is to exploit domain-specific knowledge

desired data

12

What’s the problem?
• Existing data collection/query and fault injection
techniques not sufficiently robust and scalable
for very large systems in constant flux
⇒goal: enable cross-component decentralized sys. profiling
– decentralized data collection
– decentralized querying
– online data collection, aggregation, analysis

• Detecting and diagnosing problems is hard
⇒goal: use profile/benchmark data collection/analysis

infrastructure to detect/diagnose problems (< TTD/TTR)
⇒observation: abnormal component metrics (may) indicate

an application or infrastructure problem
– distinguishing normal from abnormal per-component and

per-request statistics (anomaly detection)

13

What the operator/developer wants to know

1. Is there a problem?
– s/w correctness bug, performance bug, recovery bug,

hardware failure, overload, configuration problem, …
2. If so, what is the cause of the problem?

Currently: human involved in both
Future: automate, and help human with, both

14

Vision: automatic fault detection
• Continuously-running queries that generate
alert when exceptional conditions are met
– example: avg application response time during last

minute > 1.1 * avg response time during last 10 minutes

SELECT “alert” AS result WHERE
(SELECT avg(KR.time-KS.time)
FROM KR[Range 1 Minute], KS
WHERE KR.id=KS.id) > 1.1 *
(SELECT avg(KR.time-KS.time)
FROM KR[Range 10 Minute], KS
WHERE KR.id=KS.id)

0:0.90 > 1.1 * 0:0.50 ? ALERT!

[now = 11:0.0]

……
10:0.012
5:0.181
timereq id

KS KR

……
10:0.912
5:0.281
timereq id

app-level
request sends

app-level
response receives

15

Status: essentially implemented
(for a few metrics)

• Built on top of event logging + data collection
infrastructure used for the benchmarks

• Not yet implemented: threshholding
– currently just collects and graphs the data
– human generates alert using eyeballs and brain

16

Vision: automatic diagnosis (1)
• Find request that experienced highest latency during

past minute
[now = 11:0.0]

……
10:0.012
5:0.181
timereq id

KS KR

……
10:0.912
5:0.281
timereq id

SELECT KR.time-KS.time, KR.id as theid
FROM KR[Range 1 Minute], KS[Range 1 Minute]
WHERE KR.id=KS.id AND KR.time-KS.time = (
SELECT max(KR.time-KS.time)
FROM KR[Range 1 Minute], KS[Range 1 Minute]
WHERE KR.id = KS.id)

0:0.90, theid = 2

[we will investigate this request on the next slide]

17

Vision: automatic diagnosis (2)
• How long did it take that message to get from

hop to hop in the overlay?
•

IS, IR tables: decentralized routing layer sends/receives

…A……
DA…11
BA10:0.052

nexthopmetimereq id

A……
A…11
A…2
metimereq id

IS (node A) IR (node A)

…B……
EB…13
CB…2

nexthopmetimereq id

B……
B…23
B10:0.852
metimereq id

IS (node B) IR (node B)

SELECT IR.time-IS.time as latency, IS.me as sender, IR.me as receiver
WHERE IS.nexthop=IR.me AND IS.id = 2 AND IR.id = 2

latency = …, sender = …, receiver = A
latency = 0.80, sender = A, receiver = B
latency = …, sender = B, receiver = …

18

Status: manual “overlay traceroute”
• Simple tool to answer previous question

– “How long did it take that message to get from hop to hop in the
overlay?”

• Built on top of event logging+data collection
infrastructure used for the benchmarks

• Only one metric: overlay hop-to-hop latency
• Synchronizes clocks (currently out-of-band)
• Operates passively
• No fault injection experiments yet; coming soon

optype reporting_node request_id report_time diff

inject 169.229.50.219 3@169.229.50.219 1054576732997161

forward169.229.50.223 3@169.229.50.219 1054576732998725 1564

forward169.229.50.213 3@169.229.50.219 1054576733008831 10106

forward169.229.50.226 3@:169.229.50.219 1054576733021493 12662

deliver 169.229.50.214 3@169.229.50.219 1054576733023786 2293

19

• Benchmarks measure behavioral profile for fixed w/load
• Goal is to automate problem detection/diagnosis

– too much data for a human to do it manually
• Version 0 (human builds and applies model)

– human detects and diagnosis problems
» watch aggregate benchmark metrics, drill down w/ traceroute

• Version 1 (human builds, system applies model)
– “tell me when condition X is met”
– human defines alarm conditions, system detects when met

• Version 2 (system builds, system applies model)
– “tell me when something bad happens, and why/where”
– system defines alarm conditions and detects when met (anomaly

detection)
• Keep human in loop

– big red button
– make model and metrics understandable for human

Building and using behavioral profiles

20

Questions for current/future work
• Explore techniques for failure inference/diagnosis

– leverage statistical techniques from Magpie and intrusion detection

• Applicability of statistical techniques from real Internet
services to wide-area (need data!!!)

• What is a component?
– profile Java object time spent and data accesses

» had undergrads working on this this semester

• Robustness to system flux

• Minimizing code changes to profiled systems

• Handling schema evolution and application-specific metrics
– XML suggested yesterday

• Using these techniques for intrusion detection

21

Related work
• Closely related to Magpie (MSR Cambridge)

– embrace and extend
» larger, geographically distributed systems
» explore more models and techniques for change detection

• Part 2 has some relationship to Pinpoint
– but larger, geographically distributed systems
– adds latency profiles
– adds per-component metrics
– means very different data collection techniques and

types of analyses

• Various distributed query processors

• Remote monitoring of instrumented software

22

Conclusion and status
• Existing data collection/analysis techniques not
sufficiently robust and scalable for very large
systems in constant flux
– currently: collect data in per-node logs, aggregate on

central node for analysis
– future: decentralized storage, query, analysis

• Detecting and diagnosing problems is hard
– currently: collect aggregate metrics (latency,

consistency, bandwidth consumed) and per-request
metrics (hop-to-hop overlay latencies)

– future: online data collection, aggregation, analysis;
automatically distinguish normal from abnormal
component and request statistics (anomaly detection)

• Initial application targets
– DHTs: Bamboo, Tapestry
– applications: Seagull, (Palimpsest), other suggestions??

