
On the Way to ROC-2
(JAGR: JBoss + App-Generic Recovery)

George Candea and many others…

Stanford + Berkeley

2 © 2003 George Candea

Outline

J2EE and JBoss

JBoss Additions JAGR

µReboots

Automatic Failure-Path Inference

Self-Recovery Results

Discussion

3 © 2003 George Candea

JBoss

J2EE enterprise apps = collection of reusable Java modules

JSPs / servlets invoke EJBs, which invoke other EJBs, ...

App server = OS for Internet applications (instantiates EJBs, provides runtime svc’s, …)

JBoss = open-source, written entirely in Java, microkernel w/ JMX components

Downloaded >3.5 million times, JavaWorld ‘02 Editors’ Choice

Used by >100 large corporations (Dow Jones, WorldCom, etc.)

EJB Containers Naming Transactions

Messaging Security

Database

EJB

EJB

EJB

EJB

EJB

EJB

S
ervlet/ JS

P
 C

ontainer

W
eb S

erver

Web
Browsers

J2EE Application

JBoss Application Server

4 © 2003 George Candea

JAGR: A Self-Recovering App Server

EJB Containers Naming Transactions

Messaging Security

Database

EJB

EJB

EJB

EJB

EJB

EJB

S
ervlet/ JS

P
 C

ontainer

W
eb S

erver

Web
Browsers

Recovery Agent

Recovery
Manager

ExcMon

PPMon

E2EMon

S
tall P

roxy

Fault Injector

5 © 2003 George Candea

µReboots: Reducing Downtime

0.2%<1 secµReboot EJB

2.5%9 secRestart Petstore

13.2%47 secRestart JAGR + Petstore

100.0%357 secReboot Linux server +
JAGR + Petstore

FractionDurationRestarted Unit

Surgical reboots were all safe (Linux/ext3fs helps…)

Various forms of µReboot widely used:
Transaction level: deadlock resolution in DBs
Process level: web server rejuvenation in Internet portals
JVM level: app rejuvenation in enterprise apps

Finer grain µReboot less downtime (3 orders of magnitude)
Fine-grained workload leads to less lost work

6 © 2003 George Candea

Failure Monitoring: ExcMon

Instrumented
EJB container

Watch for Java
exceptions:

Intercept exception in container
Parse exception stack
Send information to RecoMgr
Re-throw exception

Uses “aspect-oriented programming” feature in JBoss

Types of failures (fine grained)
Unexpected (e.g., runtime OutOfMemoryError)
Expected (e.g., app-level EstoreEventException, I/O exceptions)

Problem: not all exceptions are failures !

EJB Containers Naming Transactions

Messaging Security

Database

EJB

EJB

EJB

EJB

EJB

EJB

Recovery
Manager

ExcMon

7 © 2003 George Candea

Failure Monitoring: E2EMon
Simulate a real client:

Replay HTTP requests from an application-
specific trace file (e.g., browse, mock
purchases, user profiles)

Check responses

Types of failures (coarse grained):
Network level (e.g., read timeout, connection
refused)

HTTP level (e.g., HTTP 500 “internal srv error”)

HTML level (e.g., empty page, keywords)

Problem: not all faults result in this kind of
failures (e.g., performance degradation)

S
ervlet/ JS

P
 C

ontainer

W
eb S

erver

Web
Browsers

E2EMon

S
tall P

roxy

Recovery
Manager

8 © 2003 George Candea

Failure Monitoring: PPMon

Based on
Pinpoint (PP)

Tag client
requests and
record behavior

Statistical tech’s + data mining analyze req’s and capture
aggregate behavior

Compare current behavior to historically-observed “good”
behavior report anomalies

Failure types:
Masked faults (e.g., post-failover, inventory)
Fail-stutter behavior

Problem: Not all anomalies are failures !

EJB Containers Naming Transactions

Messaging Security

Database

EJB

EJB

EJB

EJB

EJB

EJB

Recovery
Manager

ExcMon

PPMon

9 © 2003 George Candea

Automatic Failure-Path Inference

Need a recovery map dependency graph for application

How does a fault propagate through system?

Current options:
Reason/construct manually prone to human failure
Static analysis a priori model does not evolve with app

Needs to be application-generic !

Approach:
Inject faults
Observe system behavior using existing infrastructure
Build recovery map

Two phases:
1. Pre-deployment: invasive (inject + observe injected faults)
2. Post-deployment: passive (observe naturally-occurring faults)

10 © 2003 George Candea

Application-Generic: 2 Different Apps

Petstore
Sample J2EE application from Sun

E-commerce site: product catalogs, personalization,
shopping carts, purchases, shipping, user profiles, etc.

233 Java files, 11 Klines of effective code, 14 DB tables

RUBiS
EBay-like online auction (J2EE): user accounts, customized
summary information, item bidding, trustworthiness
tracking, etc.

582 Java files, 26 Klines of effective code, 7 DB tables

11 © 2003 George Candea

Petstore Maps

What does an f-map tell us?

How do we use a map?

12 © 2003 George Candea

Stall Proxy

While recovering prevent
new requests from entering
system

We lose in-transit requests… OK, if recovery is quick

Fast recovery can delay requests, instead of
turning them away

Sliding 8-second window
after which send back HTTP Retry-After

or have user read and agree to your “new” privacy policy…

HCI research: <1 sec is fast, >8 sec is distractive

S
ervlet/ JS

P
 C

ontainer

W
eb S

erver
Web

Browsers

S
tall P

roxy

13 © 2003 George Candea

Outline

J2EE and JBoss

JBoss Additions JAGR

µReboots

Automatic Failure-Path Inference

Self-Recovery Results

Discussion

14 © 2003 George Candea

AFPI and Recovery Walkthrough

EJB Containers Naming Transactions

Messaging Security

Database

EJB

EJB

EJB

EJB

EJB

EJB

S
ervlet/ JS

P
 C

ontainer

W
eb S

erver

Web
Browsers

Recovery Agent

Recovery
Manager

ExcMon

PPMon

E2EMon

Stall Proxy

Fault Injector

EJBEJBEJB

15 © 2003 George Candea

Recovering from RUBiS Deadlocks

With a particular workload, can make RUBiS deadlock

Thick line=up, thin line=down

Eventually, all clients see the server down

JAGR recovers by itself

Illusion of continuous uptime for C2 (fast
self-recovery masks downtime from end users)

Time [minutes]

16 © 2003 George Candea

Availability Improvements

End user view of service; plot # of successful reqs, averaged over 10-sec intervals

3 faults total, injected one every 2 minutes

JBoss (prompt restart) vs. JAGR (self-µReboot of all EJBs)

JAGR goodput >= 20 req/sec due to fast recovery + stall proxy

JBoss: 14,243 requests (green area under the curve)
JAGR: 25,295 requests

i.e., 78% improvement in the number of successfully-served requests
78% improvement in availability (actually performability)

17 © 2003 George Candea

Discussion

Why care, if we have redundancy + failover
Orthogonal: reducing recovery time of individual nodes is important

CNN.com cluster on Sep. 11, 2001
8:46 84K req/sec (AAL 11 hits Tower 1)
8:55 129K req/sec
9:00 229K req/sec (doubling every 5 minutes !)
9:03 Servers start thrashing; sysadmins unable to ssh into cluster

11:15 CNN.com goes down
11:30 HTML service restored, no images
16:15 1,110K req/sec

slow recovery and lack of self-recovery lead to collapse

No a priori models no “expected” failure modes robustness

18 © 2003 George Candea

Looking ahead: Recursive µReboots

F-map indicates how faults propagate recovery policy

First attempt recovery of a minimal subset of components

What if µReboot(s) ineffective?
recover progressively larger subsets

Chase fault through successive fault
boundaries

If reboot-based strategy doesn’t
work, notify operator

19 © 2003 George Candea

SSM

Looking ahead: Restart/Retry Architecture

idem = TRUE
TTL = 2,000

idem = TRUE
TTL = 1,900

idem = TRUE
TTL = 1,500

idem = TRUE
TTL = 700

http://amazon.com/viewcart/103-55021-2566

web srv

app srv

idem = TRUE
TTL = 1,500

(stateless session EJB)

(stateful session EJB)

20 © 2003 George Candea

Benefits of Architecture

Transparent sub-system recovery failure masking
and continuity of service

Can do hot bug fixes and upgrades = crash old
component, recover new one (modulo API changes)

Zero-downtime rolling rejuvenation of components
(µReboot components to prevent failure from
resource exhaustion)

Trivial migration of tasks (e.g., for failover, load
balancing, reconfiguration) = crash on one node,
recovery on the other

21 © 2003 George Candea

Further Information

http://crash.stanford.edu

http://reboot.stanford.edu

22 © 2003 George Candea

Overflow Slides

23 © 2003 George Candea

Reboots: Good and Bad

If properly designed, will unequivocally bring recovered system to start
state = best understood, best tested

Reclaim leaked/stale resources (memory, fd’s) rejuvenation

Easy to understand/employ implement, debug, automate

Frequent use: most bugs in prod-quality sys are transient/intermittent!

Software not designed to tolerate (Hardware is much better)

Can lead to extended downtime

Data corruption/loss

GOOD

BAD

Fix the BAD, exploit the GOOD…

24 © 2003 George Candea

AFPI: Invasive Phase

Injected faults = Java exceptions (high level, better coverage)

Every time an EJB C is deployed, use reflection to discover each of its methods (M1,
M2, …) and, for each method, the thrown exceptions (F1M1, F2M1, …); add tuples <C,
Mi, FjMi > to list L of faults

Also add environmental exceptions as tuples (network-related, disk I/O, memory-
related, etc.)

Once entire application is deployed,
Iterate through list, and inject one fault at a time
Place load on application, using LoadGen

As components fail, the monitors report to the Recovery Manager

RecoMgr builds fault dependency map by adding edges for each fault propagation

To simulate correlated faults, use cross-products LxL, LxLxL, etc.

After deployment, continue with passive phase, and update the recovery map as
application evolves

25 © 2003 George Candea

Fault-Specific f-maps

Zoom in on dependencies resulting from a specific fault or class of faults

Targeted recovery when we know the fault that occurred

f-map obtained by injecting exclusively app-declared exceptions
reflects what happens when we isolate it from the environment

Much simpler (thus more useful) f-map
some components missing (ProfileManagerEJB, OrderEJB, InventoryEJB) so
no propagation through them

