RECOVERY-ORIENTED COMPUTING

On the Way to ROC-2
(JAGR: JBoss + App-Generic Recovery)

George Candea and many others...

Stanford + Berkeley

Outline

m J2EE and JBoss

m JBoss Additions - JAGR

m UIReboots

m Automatic Failure-Path Inference
m Self-Recovery Results

m Discussion

© 2003 George Candea

JBoss

J2EE Application
EJB EJB

CORNED: &)
EJB Containers Naming Transactions =

| i | i | Database

Messaging Security -

JBoss Application Server

&

Web
Browsers —-%

J

T

JanIag gapN
|
JBUIBJUOD ST / 19|AI8S

m J2EE enterprise apps = collection of reusable Java modules
m JSPs / servlets invoke EJBs, which invoke other EJBs, ...

m App server = OS for Internet applications (instantiates EJBs, provides runtime svc’s, ...)

m JBoss = open-source, written entirely in Java, microkernel w/ JMX components
m Downloaded >3.5 million times, JavaWorld ‘02 Editors’ Choice

m Used by >100 large corporations (Dow Jones, WorldCom, etc.)

A 3 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

JAGR: A Self-Recovering App Server

&
D
L
o
&

JaAIaS gapA

JBUIBUOD dSI /19IMSS

N)
EIB) EJB EJB
EJB
& — (e (Es8)

: J

' ' Database
EJB Containers Naming Transactions

| 1
Messaging | Security Recovery

Fault Injector Recovery Agent I PPMon Manager

3

RECOVERY-ORIENTED COMPUTING

© 2003 George Candea

LMReboots: Reducing Downtime

Restarted Unit Duration | Fraction
Reboot Linux server + 357 sec 100.0%
JAGR + Petstore
Restart JAGR + Petstore 47 sec 13.2%
Restart Petstore 9 sec 2.5%
HMReboot EIB <1 sec 0.2%

m Surgical reboots were all safe (Linux/ext3fs helps...)

m Various forms of yReboot widely used:
e Transaction level: deadlock resolution in DBs

e Process level: web server rejuvenation in Internet portals

e JVM level: app rejuvenation in enterprise apps

m Finer grain pReboot = less downtime (3 orders of magnitude)

e Fine-grained workload leads to less lost work

y

RECOVERY-ORIENTED COMPUTING

© 2003 George Candea

Failure Monitoring: ExcMon
f@ EJB EJB b

EJB >
N~ J
; : Database
[| Instru mented EJB Containers Naming Transactions =—
>

EJB container | , | —

Messaging Security Lm Recove
m Watch for Java

exceptions:
e Intercept exception in container
e Parse exception stack
e Send information to RecoMgr
e Re-throw exception

m Uses “aspect-oriented programming” feature in JBoss

m Types of failures (fine grained)
e Unexpected (e.g., runtime OutOfMemoryError)
e Expected (e.g., app-level EstoreEventException, I/O exceptions)

m Problem: not all exceptions are failures !

A 6 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Failure Monitoring: E2EMon

&
E— < | m Simulate a real client:
_web || § _ § ; e Replay HTTP requests from an application-
R 2 18 © specific trace file (e.g., browse, mock
| & c?g S purchases, user profiles)
%‘ e Check responses
| E2EMon m Types of failures (coarse grained):
e Network level (e.g., read timeout, connection
refused)
e HTTP level (e.g., HTTP 500 “internal srv error”)
e HTML level (e.g., empty page, keywords)
WV ELET [

m Problem: not all faults result in this kind of
failures (e.g., performance degradation)

© 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Failure Monitoring: PPMon

m Based on
Pinpoint (PP)

m Tag client
requests and
record behavior

-

EJB

EJB

EJB

J

EJB Containers

Naming

Transactions =

Messaging

|
Security

>
>

ExcMon Recovery
PPMon Manager

m Statistical tech’s + data mining - analyze req’s and capture

aggregate behavior

m Compare current behavior to historically-observed “good”
behavior = report anomalies

m Failure types:

e Masked faults (e.g., post-failover, inventory)
e Fail-stutter behavior

m Problem: Not all anomalies are failures !

© 2003 George Candea

Automatic Failure-Path Inference

m Need a recovery map = dependency graph for application
m How does a fault propagate through system?

m Current options:
e Reason/construct manually > prone to human failure
e Static analysis - a priori model does not evolve with app

m Needs to be application-generic !

m Approach:
e Inject faults
e Observe system behavior using existing infrastructure
e Build recovery map

m Two phases:
1. Pre-deployment: invasive (inject + observe injected faults)
2. Post-deployment: passive (observe naturally-occurring faults)

&h 9 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Application-Generic: 2 Different Apps

m Petstore
e Sample J2EE application from Sun

e E-commerce site: product catalogs, personalization,
shopping carts, purchases, shipping, user profiles, etc.

e 233 Java files, 11 Klines of effective code, 14 DB tables

m RUBIS

e EBay-like online auction (J2EE): user accounts, customized
summary information, item bidding, trustworthiness
tracking, etc.

e 582 Java files, 26 Klines of effective code, 7 DB tables

© 2003 George Candea

estore/control/validatenewaccount

Petstore Maps Ly

—» estore/controliverifysignin

v MainServlet
R I S AN
Iy ~, estore/control/commitorder

estore/control/updateaccount

ShoppingCartEJB 1
4

m What does an f-map tell us? I

ShoppingClientControllerEJB i
A v e - OrderEJB

CljstomcrEJB
v

| HitpJspBase

4

estore/control/language

CatalogEJB

m How do we use a map?

Web Tier | L . -
.4’ AV ol InventoryDB |

ShoppingCartEJB .
4

_EStoreDB |
1 < i
ShoppingClientControllerEJE & -)
Av ™ -
CatalogEJB _ CustomerEJB -
b

-
. el _InvéhtoerB |
" EStoreDB |

A 11 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Stall Proxy

el

Web

m While recovering - prevent Browsers | |1
new requests from entering
system

JanIag gapn
|
JBUIBJUOD dSI / 18IMSS

m We lose in-transit requests... OK, if recovery is quick

m Fast recovery = can delay requests, instead of
turning them away

m Sliding 8-second window
e after which send back HTTP Retry-After
e or have user read and agree to your “new” privacy policy...

m HCI research: <1 sec is fast, >8 sec is distractive

© 2003 George Candea

Outline

N
N
m Self-Recovery Results

m Discussion

© 2003 George Candea

AFPI and Recovery Walkthrough

4 N
’ }: &9
EJB @ @ >
\ I I : /
i i = : Database
I EJB Containers I Naming Transactions =—i

JBUIBJUOD dSI /19IMSS

[I |
1 1
| Messaging ‘ Security
L

© 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Recovering from RUBIS Deadlocks

JBoss / R:LIEIiS JAGR / RL!EIiS

Time [minutes] Time [minutes]

m With a particular workload, can make RUBIS deadlock
m Thick line=up, thin line=down

m Eventually, all clients see the server down

m JAGR recovers by itself

m Jllusion of continuous uptime for C2 (fast
self-recovery masks downtime from end users)

A 15 © 2003 George Candea

Availability Improvements

JBo=ss: manual recovery JAGR: automatic self-recowvery

7o | - 7e | -
68 | =
se |
48 |

el

Regquestsssec
Regquestsssec

za

1@

1 2 3 4 =] & 7 =]

Time [minutes] Time [minutes]

m End user view of service; plot # of successful regs, averaged over 10-sec intervals
m 3 faults total, injected one every 2 minutes

m JBoss (prompt restart) vs. JAGR (self-puReboot of all EJBs)

m JAGR goodput >= 20 reqg/sec due to fast recovery + stall proxy

m JBoss: 14,243 requests (green area under the curve)
JAGR: 25,295 requests

m i.e., 78% improvement in the number of successfully-served requests
- 78% improvement in availability (actually performability)

A 16 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Discussion

m Why care, if we have redundancy + failover
e Orthogonal: reducing recovery time of individual nodes is important

e CNN.com cluster on Sep. 11, 2001
8:46 84K req/sec (AAL 11 hits Tower 1)
8:55 129K reqg/sec
9:00 229K reg/sec (doubling every 5 minutes !)
9:03 Servers start thrashing; sysadmins unable to ssh into cluster
11:15 CNN.com goes down
11:30 HTML service restored, no images
16:15 1,110K reqg/sec

slow recovery and lack of self-recovery lead to collapse

m No a priori models - no “expected” failure modes - robustness

© 2003 George Candea

Looking ahead: Recursive yReboots

m F-map indicates how faults propagate - recovery policy

m First attempt recovery of a minimal subset of components

m What if pReboot(s) ineffective? >
recover progressively larger subsets

m Chase fault through successive fault
boundaries

m If reboot-based strategy doesn’t
work, notify operator

© 2003 George Candea

Looking ahead: Restart/Retry Architecture

app srv

web srv

idem = TRUE
TTL = 1,900
) |3

idem TRUE
TTL = 2,000 ¢

XN
........
X

X

3 SSM
http://amazon.com/viewcart/103-55021-2566 LEGID = Sy =~ idem = TRUE
TTL = 1,500 [¥]-.... TTL = 700

(stateful session EJB)

< >

idem TRUE
TTL = 1,500

(stateless session EJB)

A 19 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Benefits of Architecture

m Transparent sub-system recovery = failure masking
and continuity of service

m Can do hot bug fixes and upgrades = crash old
component, recover new one (modulo API changes)

m Zero-downtime rolling rejuvenation of components
(MReboot components to prevent failure from
resource exhaustion)

m Trivial migration of tasks (e.g., for failover, load
balancing, reconfiguration) = crash on one node,
recovery on the other

© 2003 George Candea

Further Information

http://crash.stanford.edu

http://reboot.stanford.edu

Overflow Slides

A 22 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Reboots: Good and Bad

GOOD
m If properly designed, will unequivocally bring recovered system to start
state = best understood, best tested

m Reclaim leaked/stale resources (memory, fd’s) = rejuvenation
m Easy to understand/employ - implement, debug, automate

m Frequent use: most bugs in prod-quality sys are transient/intermittent!

BAD

m Software not designed to tolerate (Hardware is much better)
m Can lead to extended downtime

m Data corruption/loss

Fix the BAD, exploit the GOOQOD...

A 23 © 2003 George Candea

RECOVERY- ORIENTED COMPUTIN G

AFPI: Invasive Phase

m Injected faults = Java exceptions (high level, better coverage)

m Every time an EJB C is deployed, use reflection to discover each of its methods (M1,
M2, ...) and, for each method, the thrown exceptions (F1y,, F2yy, -..); add tuples <C,
Mi, Fjy; > to list L of faults

m Also add environmental exceptions as tuples (network-related, disk I/O, memory-
related, etc.)

m Once entire application is deployed,
e Iterate through list, and inject one fault at a time
e Place load on application, using LoadGen

m As components fail, the monitors report to the Recovery Manager
m RecoMgr builds fault dependency map by adding edges for each fault propagation
m To simulate correlated faults, use cross-products LxL, LxLxL, etc.

m After deployment, continue with passive phase, and update the recovery map as
application evolves

A 24 © 2003 George Candea

RECOVERY-ORIENTED COMPUTING

Fault-Specific f-maps

w MainServiet
A T

ShoppingCartEJB
A

v CustomerEJB
ShoppingClientControllerEJB 4 4
A

CatalogEJB AccountEJB

SignOnEJB
m Zoom in on dependencies resulting from a specific fault or class of faults
m Targeted recovery when we know the fault that occurred

m f-map obtained by injecting exclusively app-declared exceptions
e reflects what happens when we isolate it from the environment

m Much simpler (thus more useful) f-map

e some components missing (ProfileManagerEJB, OrderEJB, InventoryE]B) so
no propagation through them

© 2003 George Candea

