
Undo: Update and Futures

Aaron Brown

ROC Research Group
University of California, Berkeley

Summer 2003 ROC Retreat
5 June 2003



Slide 2

Outline

• Recap of Undo for Operators

• Measurements of e-mail undo prototype

• Upcoming: human evaluation 

• Potential future extensions



Slide 3

Recap: What Is “Operator Undo”?

• Give operators and system admins the ability 
to “travel in time”
– to undo the effects of erroneous actions

» configuration changes
» new software deployment
» patches and upgrades
» problem repairs

– to retroactively repair other problems affecting state
» software bugs
» viruses
» external attacks



Slide 4

Recap: Three R’s Undo Model

• Time travel for system operators
– Rewind: roll back all state, users’ and operator’s
– Repair: alter past operator events to avert problems
– Replay: re-execute rewound user events

» operator timeline must be restored manually, if desired
» may cause externally-visible paradoxes for users

User timeline

Operator timeline

“Undo!”



Slide 5

A Simple Solution for a 
Common Case
• Undo for services with human end-users

– centralized state scopes the problem
– human users provide flexibility for handling paradoxes

» undo is typically transparent to end-user, but not perfect
» worst-case: end-user must reconcile mental model based 

on supplied hints

• Applicability

ideally suited to Undo poorly suited to Undo

online
auctions

missile
launch
control

online
shopping

shared
calendaring

e-mail financial
applications

file/block
storage
service

web
search



Slide 6

Architecture in Brief

• Target
– black-box services with 

human end-users
– single-host, for simplicity

• Approach
– rewindable storage
– intercept, log, replay 

user requests

• Fault assumptions
– service can be 

arbitrarily incorrect

Users

Operator

Repairs

Application
Service

Can include:
- user state
- application
- OS

Rewindable
Storage

App. Proxy

App. protocol
User

Timeline
Log

User events

App. protocol



Slide 7

Instantiation: E-mail Prototype

• Prototype target
– e-mail store service

» leaf node in e-mail 
delivery network

• Implementation
– NetApp filer provides 

rewindable storage layer
– e-mail-specific proxy 

intercepts/replays 
IMAP & SMTP requests

Operator

Repairs

E-mail Store
Service

Can include:
- mailboxes
- server code
- OS

NetApp
Filer

Users

IMAP/SMTP
Proxy

IMAP/SMTP
User

Timeline
Log

E-mail events

SMTP IMAP



Slide 8

Key Concept: Verbs

• Verbs encode user events
– encapsulate application protocol commands

» record of desired user action
» context-independent record of parameters
» record of externally-visible output

– intended to capture intent of protocol commands, not 
effects on system state

• Example verbs for e-mail (simplified)

– SMTP: DELIVER {to, from, messageText} {}
– IMAP: COPY {srcFolder, msgNum[], dstFolder} {}

FETCH {folder, msgNum[], fetchSpec} {text}



Slide 9

Role of Verbs

• Verbs enable replay
– verb log forms a history of end-user interaction

» dissociated from original system context
» annotated with original output to end-user
» annotated with external consistency policy and 

compensations for consistency violations

• Verbs make it easier to reason about 3R’s
– define exactly what user state is preserved by 3R cycle

• Verbs capture key application semantics
– consistency model and commutativity of operations



Slide 10

Outline

• Recap of Undo for Operators

• Measurements of e-mail undo prototype

• Upcoming: human evaluation 

• Potential future extensions



Slide 11

E-mail Prototype Details

• Target service: e-mail store service
– a leaf node in the Internet e-mail network

• Prototype details
– wraps an existing IMAP/SMTP e-mail store service

» not platform-specific
» evaluation uses sendmail and the UW IMAP server

– written in Java
» ~25K lines (~9K semicolons)
» about 1/8 the size of the mail service itself, in LoC



Slide 12

Prototype Measurements

• Experiments
– space overhead
– time overhead
– rewind & replay time

• Evaluation workload
– modified SPECmail2000 workload with 10,000 users 

» simulates traffic seen by ISP mail server
» modified to use IMAP instead of POP; all mail kept local



Slide 13

Feasibility: Space & Time Overhead

IMAP SMTP IMAP SMTP

Se
ss

io
n 

Le
ng

th
 (m

s)

0

200

400

600

800

1000

1200
Without Undo
With Undo

Null Session Median Session

2.3x

1.8x

1.7x

1.2x

• Time overhead
– IMAP/SMTP session lengths for 

SPECmail workload:

• Space overhead
– 0.45 GB/day/1000 users 

» uncompressed
» Java serialization bug 

overhead factored out 
(>2x bigger)

– ~250,000 user-days of data 
on one 120GB disk

– below perceived “sluggishness” 
threshold for interactive apps.



Slide 14

Feasibility: Rewind and Replay

• Rewind
– NetApp filer snapshot 

restore: ~8 seconds
» independent of amount 

of data to restore
» but not undoable

– alternative is O(#files)
» 10 minutes for 10,000 

users

Users

R
ep

la
y 

Sp
ee

du
p

0

5

10

15

20

25

30

1.3x
2.6x

10,0005,0001,000

Real-
Time

12.8x

29.2x

500

• Replay
– replay speed: ~9 verbs/sec
– with parallel, O-O-O replay
– better connection 

management will help
– compared to real-time:



Slide 15

Outline

• Recap of Undo for Operators

• Measurements of e-mail undo prototype

• Upcoming: human evaluation 

• Potential future extensions



Slide 16

Evaluating Undo: Human Factors

• Undo is a recovery tool for human operators
– effectiveness depends on how it is used

» will it address the problems faced by real operators?
» will operators know when/how to use it?
» does it improve dependability over manual recovery?

• Need methodology that synthesizes systems 
benchmarking with human studies
– include human operators to drive recovery
– but focus is on the system and system metrics

» recovery time, dependability, performance



Slide 17

Evaluating Human Factors of Undo

• Three-step process
1) survey operators to identify real-world problems

» evaluate whether Undo will address them
» collect scenarios for step 2

2) controlled laboratory experiments involving humans
» evaluate Undo against manual recovery
» use scenarios from step 1
» evaluate with dependability metrics: recovery time, 

correctness, performance

3) long-term ethnographic study of deployed system
» evaluate dependability benefits of Undo “in the wild”
» requires time and resources beyond the scope of this work



Slide 18

Step 1: Survey Operators

• Online survey of e-mail system operators
– questions on daily tasks, challenges, recent problems
– 68 responses

• Results

configuration
deployment/
upgrade
other
undoable
non-
undoable

Common Tasks Challenging Tasks Lost e-mail problems

50%56%

25%

26% 17%

25%
18%

31%

33%12%1%

6%

(151 total) (68 total) (12 total)

» configuration and deployment issues dominate
» Undo potentially useful for majority of tasks, problems



Slide 19

Step 2: Lab Experiments w/Humans

• Questions to answer
– do operators know when Undo is appropriate?
– does having Undo improve dependability?

• Compare e-mail systems with & without Undo
– randomized human trials
– each trial structured as a dependability benchmark

• In progress



Slide 20

Dependability Benchmarks

• Dependability benchmark basics
– apply workload
– simulate realistic problem scenario
– measure recovery time, correctness, performance

Time0
recovery time

performability impact
(performance, correctness)

start of
scenario

normal behavior

pe
rf

or
m

ab
ili

ty

end of
scenario

– trial scenarios chosen based on survey results
» including scenarios where Undo is unlikely to help

See: Brown, Chung, Patterson, “Including the Human Factor in Dependability Benchmarks”, DSN WDB 2003.
Brown, Patterson, “Towards Availability Benchmarks...”, USENIX 2000.



Slide 21

Lab Experiments with Humans

• Some key subtleties
– overcoming mental model inertia

» select and train less-experienced subjects

– making scenarios tractable
» subject plays role of shift-work operator repairing 

documented problem from previous shift

• Status: in progress
– experimental protocol defined
– just received Human Subjects Committee approval
– data collection to begin shortly



Slide 22

Outline

• Recap of Undo for Operators

• Measurements of e-mail undo prototype

• Upcoming: human evaluation 

• Potential future extensions



Slide 23

Extending Undo: Other Apps

ideally suited to Undo poorly suited to Undo

online
auctions

missile
launch
control

online
shopping

shared
calendaring

e-mail financial
applications

file/block
storage
service

web
search

• When is undo possible?
– state is centralized (or observable)
– all output to external entities can be intercepted

» and can be correlated to user requests

– external output is provisional for some time window
» e.g., can be cancelled, altered, reissued
» or simply doesn’t matter in application’s external 

consistency model



Slide 24

Extending Undo: Spheres of Undo

• Rewindable storage defines a sphere of undo

• All info crossing sphere must be intercepted
– input: becomes verbs
– output: becomes externalized output

» must be possible to associate output with a verb

Rewindable
Storage

Application 
ServiceSphere of

Undo

Users

Service

RS

External
data source

P

P

P External
service
(output consumer)



Slide 25

Further Extensions

• Verb concept may have broader applicability
– impact analysis of configuration changes

» use verb log as annotated history to evaluate changes on 
cloned system

– self-checking data set for self-testing components
– general approach to defining & encapsulating 

application consistency from end-user point of view?
» today, procedural and implicit
» can verbs be made declarative? 
» can verbs be extracted automatically from object 

relationships?



Slide 26

More Verb Extensions

• Extending verbs to administrative tasks
– in desktop environment

» manage software installations/upgrades
» provide “system refresh” using undo techniques
» capture configuration changes at intent level

– in server environment
» move common tasks into undo framework
» dynamically identify and guide ongoing operations tasks 

by analyzing verb sequences

– key challenge in either environment is to capture 
breadth of administrative tasks



Slide 27

Conclusions

• E-mail implementation demonstrates 
feasibility of Undo
– improvements in protocols, base storage technology 

would help reduce overhead

• Human experiments to evaluate usefulness 
about to begin

• Verb construct has significant potential for 
further research
– extending Undo to broader domains
– exploring other tools to support human operators



Undo: Update and Futures

• Acknowledgements
– ROC Undergraduate Benchmarking Group

» Leonard Chung, Billy Kakes, Calvin Ling

– Berkeley/Stanford ROC Research Group

• For more info:
– abrown@cs.berkeley.edu
– http://roc.cs.berkeley.edu/


	Undo: Update and Futures
	Outline
	Recap: What Is “Operator Undo”?
	Recap: Three R’s Undo Model
	A Simple Solution for a Common Case
	Architecture in Brief
	Instantiation: E-mail Prototype
	Key Concept: Verbs
	Role of Verbs
	Outline
	E-mail Prototype Details
	Prototype Measurements
	Feasibility: Space & Time Overhead
	Feasibility: Rewind and Replay
	Outline
	Evaluating Undo: Human Factors
	Evaluating Human Factors of Undo
	Step 1: Survey Operators
	Step 2: Lab Experiments w/Humans
	Dependability Benchmarks
	Lab Experiments with Humans
	Outline
	Extending Undo: Other Apps
	Extending Undo: Spheres of Undo
	Further Extensions
	More Verb Extensions
	Conclusions
	Undo: Update and Futures

