OceanStore Status and Directions
ROC/OceanStore Retreat 6/10/02

John Kubiatowicz
University of California at Berkeley
Everyone’s Data, One Utility

- Millions of servers, billions of clients
 - 1000-YEAR durability (excepting fall of society)
 - Maintains Privacy, Access Control, Authenticity
 - Incrementally Scalable (“Evolvable”)
 - Self Maintaining!

- Not quite peer-to-peer:
 - Utilizing servers in infrastructure
 - Some computational nodes more equal than others
Big Push: OSDI

- We analyzed and tuned the write path
 - Many different bottlenecks and bugs found
 - Currently committing data and archiving it at about 3-5 Mb/sec
Big Push: OSDI

• Stabilized basic OceanStore code base

• Interesting issues:
 - Cryptography in critical path
 • Fragment generation/SHA-1 limiting archival throughput at the moment
 • Signatures are problem for inner ring
 - (although - Sean will tell you about cute batching trick)
 - Second-tier can shield inner ring
 • Actually shown this with Flash-crowd-like benchmark
 - Berkeley DB has max limit approx 10mb/sec
 • Buffer cache layer can’t meet that
OceanStore Goes Global!

- OceanStore components running “globally:”
 - Australia, Georgia, Washington, Texas, Boston
 - Able to run the Andrew File-System benchmark with inner ring spread throughout US
 - Interface: NFS on OceanStore

- Word on the street: it was easy to do
 - The components were debugged locally
 - Easily set up remotely

- I am currently talking with people in:
 - England, Maryland, Minnesota,
 - Intel P2P testbed will give us access to much more
Inner Ring

- Running Byzantine ring from Castro-Liskov
 - Elected “general” serializes requests
- Proactive Threshold signatures
 - Permits the generation of single signature from Byzantine agreement process
- Highly tuned cryptography (in C)
 - Batching of requests yields higher throughput
- Delayed updates to archive
 - Batches archival ops for somewhat quiet periods
- Currently getting approximately 5Mb/sec
We have Throughput Graphs! (Sean will discuss)
Self-Organizing second-tier

• Have simple algorithms for placing replicas on nodes in the interior
 – Intuition: locality properties of Tapestry help select positions for replicas
 – Tapestry helps associate parents and children to build multicast tree

• Preliminary results show that this is effective

• We have tentative writes!
 – Allows local clients to see data quickly
Effectiveness of second tier

![Bar chart showing the time (ms) for different operations with and without a multicast tree. The chart compares Disseminate Updates to Replicas, Process Update at Inner Ring, and Send Update Request to Inner Ring. The x-axis represents the number of replicas, and the y-axis represents time in milliseconds. The chart is divided into two sections: one without a multicast tree and one with a multicast tree. The bars indicate the time taken for each operation at different replica counts.]
Archival Layer

- Initial implementation needed lots of tuning
 - Was getting 1Mb/sec coding throughput
 - Still lots of room to go:
 - A "C" version of fragmentation could get 26MB/s
 - SHA-1 evaluation expensive

- Beginnings of online analysis of servers
 - Collection facility similar to web crawler
 - Exploring failure correlations for global web sites
 - Eventually used to help distribute fragments
New Metric: FBLPY

- No more discussion of 10^{34} years MTTF
- Easier to understand?
Basic Tapestry Mesh
Incremental suffix-based routing
Dynamic Adaptation in Tapestry

• New algorithms for nearest-neighbor acquisition [SPAA ’02]
• Massive parallel inserts with objects staying continuously available [SPAA ’02]
• Deletes (voluntary and involuntary): [SPAA ’02]
• Hierarchical objects search for mobility [MOBICOM submission]
• Continuous adjustment of neighbor links to adapt to failure [ICNP]
• Hierarchical routing (Brocade): [IPTPS’01]
Reality: Web Caching through OceanStore
Other Apps

• This summer: Email through OceanStore
 - IMAP and POP proxies
 - Let normal mail clients access mailboxes in OS

• Palm-pilot synchronization
 - Palm database as an OceanStore DB

• Better file system support
 - Windows IFS (Really!)
Summer Work

• Big push to get privacy aspects of OceanStore up and running
• Big push for more apps
• Big push for Introspective computing aspects
 - Continuous adaptation of network
 - Replica placement
 - Management/Recovery
 - Continuous Archival Repair
• Big push for stability
 - Getting stable OceanStore running continuously
 - Over big distances
 - ...

For more info:

- **OceanStore vision paper for ASPLOS 2000**
 “OceanStore: An Architecture for Global-Scale Persistent Storage”
- **OceanStore paper on Maintenance (IEEE IC):**
 “Maintenance-Free Global Data Storage”
- **SPAA paper on dynamic integration**
 “Distributed Object Location in a Dynamic Network”
- **Both available on OceanStore web site:**
 http://oceanstore.cs.berkeley.edu/