Brocade: Landmark Routing on Peer to Peer Networks

Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz

State of the Art Routing

- High dimensionality and coordinate-based P2P routing
 - Decentralized Object Location and Routing: Tapestry, Pastry, Chord, CAN, etc...
 - Sub-linear storage and # of overlay hops per route
 - Properties dependent on random name distribution
 - Optimized for uniform mesh style networks

- Transit-stub topology, disparate resources per node
- Result: Inefficient inter-domain routing (b/w, latency)

Talk Outline

H Motivation

- **#** Brocade Architecture
- **#** Brocade Routing
- **#** Evaluation
- **#** Summary / Open Questions

Brocade: Landmark Routing

Goals

- Eliminate unnecessary wide-area hops for inter-domain messages
 - Eliminate traffic going through high latency, congested stub links
 - Reduce wide-area bandwidth utilization
- Maintain interface: RouteToID (globally unique ID)

Brocade Architecture

Mechanisms

Intuition: route quickly to destination domain

- Organize group of supernodes into secondary overlay
- Sender (S) sends message to local supernode SN1
- SN1 finds and routes message to supernode SN2 near receiver R
 - SN1 uses Tapestry object location to find SN2
- SN2 sends message to R via normal routing

Classifying Traffic

H Brocade not useful for intra-domain messages

- P2P layer should exploit some locality (Tapestry)
- Undesirable processing overhead
- Classifying traffic by destination
 - Proximity caches:
 Every node keeps list of nodes it knows to be local Need not be optimal, worst case: 1 relay through SN
 - *Cover set:* Supernode keeps list of all nodes in its domain. Acts as authority on local vs. distant traffic

Entering the Brocade

\blacksquare Route: Sender \rightarrow Supernode (Sender)?

- **#** IP Snooping brocade
 - Supernode listens on P2P headers and redirects
 - Use machines close to border gateways
 - +: Transparent to sender —: may touch local nodes
- **#** Directed brocade
 - Sender sends message directly to supernode
 - Sender locates supernode via DNS resolution: *nslookup supernode.cs.berkeley.edu*
 - +: maximum performance -: state maintenance

Inter-supernode Routing

Route: Supernode (sender) \rightarrow Supernode (receiver)

- Locate receiver's supernode given destination nodeID
- Use Tapestry object location
- **#** Tapestry
 - Routing mesh w/ built in proximity metrics
 - Location exploits locality (finds closer objects faster)
- **#** Finding supernodes
 - Supernode "publishes" cover set on brocade layer as locally stored objects
 - To route to node N, locate server on brocade storing N

Feasibility Analysis

♯ Some numbers

- Internet: ~ 220M hosts, 20K AS's, ~10K nodes/AS
- Java implementation of Tapestry on PIII 800: ~1000 msgs/second

■ State maintenance

- AS of 10K nodes, assume 10% enter/leave every minute
- Only ~1.7*5 → 9% of CPU spent processing publish on Brocade
- If inter-supernode traffic takes X ms, Publishing takes 5 X
- Bandwidth: 1K/msg * 1K msg/min = 1MB/min = 160kb/s
- Storage requirement of Tapestry
 - 20K AS's, Octal Tapestry, $\lceil Log_8(20K^2) \rceil = 10$ digits
 - 10K objects (Tapestry GUIDs) published per supernode
 - Tapestry GUID = 160 bits = 20B
 - Expected storage per SN: 10 * 10K * 20B = 2MB

Evaluation: Routing RDP

Local proximity cache on; inter-domain:intra-domain = 3:1 Packet simulator, GT-ITM 4096 T, 16 SN, CPU overhead = 1

Evaluation: Bandwidth Usage

Brocade Aggregate Bandwidth Usage

Local proximity cache on Bandwidth unit: (SizeOf(Msg) * Hops)

Brocade Summary

■ P2P systems assume uniformity

- Extraneous hops through backbone to domains
- > Routing across congested stubs links
- **#** Constrain inter-domain routing
 - Remove unnecessary routing through stubs
 - Reduce expected inter-domain hops
 - Limit misdirection in less congested backbone
- **#** Result: lower latency, less bandwidth utilization

Ongoing Questions

■ Performance at what cost?

- Keep virtualization and level of indirection, named routing
- May lose some fault-tolerance (how much?)
- Making P2P real
 - Deployment issues?
 - Impact of BGP routing policies on performance?
- Future/ongoing work
 - Fault-tolerant supernodes
 - Finer-grain node differentiation?
 - Brocade as replacement for BGP?

{ ravenben, hling }@eecs.berkeley.edu HTTP://www.cs.berkeley.edu/~ravenben/tapestry