Brocade: Landmark Routing on Peer to Peer Networks

Ling Huang,
Ben Y. Zhao, Yitao Duan,
Anthony Joseph, John Kubiatowicz
State of the Art Routing

- High dimensionality and coordinate-based P2P routing
 - Decentralized Object Location and Routing: Tapestry, Pastry, Chord, CAN, etc…
 - Sub-linear storage and # of overlay hops per route
 - Properties dependent on random name distribution
 - Optimized for uniform mesh style networks
Reality

- Transit-stub topology, disparate resources per node
- Result: Inefficient inter-domain routing (b/w, latency)
Talk Outline

- Motivation
- Brocade Architecture
- Brocade Routing
- Evaluation
- Summary / Open Questions
Brocade: Landmark Routing

Goals

- Eliminate unnecessary wide-area hops for inter-domain messages
 - Eliminate traffic going through high latency, congested stub links
 - Reduce wide-area bandwidth utilization
- Maintain interface: RouteToID (*globally unique ID*)
Brocade Architecture

Original Route
Brocade Route

Brocade Layer

P2P Network

AS-1
AS-2
AS-3
S
R
Mechanisms

Intuition: route quickly to destination domain

- Organize group of supernodes into secondary overlay
- Sender (S) sends message to local supernode SN1
- SN1 finds and routes message to supernode SN2 near receiver R
 - SN1 uses Tapestry object location to find SN2
- SN2 sends message to R via normal routing
Classifying Traffic

- Brocade not useful for intra-domain messages
 - P2P layer should exploit some locality (Tapestry)
 - Undesirable processing overhead

- Classifying traffic by destination
 - Proximity caches:
 Every node keeps list of nodes it knows to be local
 Need not be optimal, worst case: 1 relay through SN
 - Cover set:
 Supernode keeps list of all nodes in its domain.
 Acts as authority on local vs. distant traffic
Entering the Brocade

- **Route:** Sender → Supernode (Sender)?
- **IP Snooping brocade**
 - Supernode listens on P2P headers and redirects
 - Use machines close to border gateways
 +: Transparent to sender –: may touch local nodes
- **Directed brocade**
 - Sender sends message directly to supernode
 - Sender locates supernode via DNS resolution:
 \[\text{nslookup } \text{supernode.cs.berkeley.edu}\]
 +: maximum performance –: state maintenance
Inter-supernode Routing

- Route: Supernode (sender) → Supernode (receiver)
 - Locate receiver’s supernode given destination nodeID
 - Use Tapestry object location

- Tapestry
 - Routing mesh w/ built in proximity metrics
 - Location exploits locality (finds closer objects faster)

- Finding supernodes
 - Supernode “publishes” cover set on brocade layer as locally stored objects
 - To route to node N, locate server on brocade storing N
Feasibility Analysis

Some numbers
- Internet: ~ 220M hosts, 20K AS’s, ~10K nodes/AS
- Java implementation of Tapestry on PIII 800: ~1000 msgs/second

State maintenance
- AS of 10K nodes, assume 10% enter/leave every minute
- Only ~1.7*5 \(\Rightarrow \) 9% of CPU spent processing publish on Brocade
- If inter-supernode traffic takes \(X \) ms, Publishing takes 5 \(X \)
- Bandwidth: 1K/msg * 1K msg/min = 1MB/min = 160kb/s

Storage requirement of Tapestry
- 20K AS’s, Octal Tapestry, \(\lceil \log_8(20K^2) \rceil = 10 \) digits
- 10K objects (Tapestry GUIDs) published per supernode
- Tapestry GUID = 160 bits = 20B
- Expected storage per SN: 10 * 10K * 20B = 2MB
Evaluation: Routing RDP

Brocade Latency RDP 3:1

- Original Tapestry
- IP Snooping Brocade
- Directed Brocade
- Optimal IP

Optimal Route Distance (Hops)

Relative Delay Penalty

Local proximity cache on; inter-domain:intra-domain = 3:1
Packet simulator, GT-ITM 4096 T, 16 SN, CPU overhead = 1
Evaluation: Bandwidth Usage

Brocade Aggregate Bandwidth Usage

- **Original Tapestry**
- **IP Snooping Brocade**
- **Directed Brocade**
- **Minimum Bandwidth**

Bandwidth unit: \((\text{SizeOf(Msg)} \times \text{Hops})\)

Local proximity cache on
Brocade Summary

- P2P systems assume uniformity
 - Extraneous hops through backbone to domains
 - Routing across congested stubs links
- Constrain inter-domain routing
 - Remove unnecessary routing through stubs
 - Reduce expected inter-domain hops
 - Limit misdirection in less congested backbone
- Result: lower latency, less bandwidth utilization
Ongoing Questions

- **Performance at what cost?**
 - Keep virtualization and level of indirection, named routing
 - May lose some fault-tolerance (how much?)

- **Making P2P real**
 - Deployment issues?
 - Impact of BGP routing policies on performance?

- **Future/ongoing work**
 - Fault-tolerant supernodes
 - Finer-grain node differentiation?
 - Brocade as replacement for BGP?

{ ravenben, hling }@eecs.berkeley.edu

HTTP://www.cs.berkeley.edu/~ravenben/tapestry