
Simultaneous Insertions in
Tapestry

Kris Hildrum, UC Berkeley
hildrum@cs.berkeley.edu

Joint work with John Kubiatowicz,
Satish Rao, and Ben Y. Zhao

This is going to be different…

• Please stop me if
I’m confusing.

• This will be your
only graph.

• Now for the hard
(but very cool)
stuff…

0
0.5

1
1.5

2
2.5

3
3.5

4

This Talk Kayaking

Proofs
Graphs
Sun

Related Work
(no, this wasn’t in the original talk)

• Tapestry mesh inspired by paper by
Plaxton, Rajaraman and Richa from
SPAA 1997.

• Other peer-to-peer object location
systems include
– Chord
– CAN
– Pastry

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

NodeID
0xEF34

NodeID
0xEF31NodeID

0xEFBA

NodeID
0x0921

NodeID
0xE932

NodeID
0xEF37

NodeID
0xE324

NodeID
0xEF97

NodeID
0xEF32

NodeID
0xFF37

NodeID
0xE555

NodeID
0xE530

NodeID
0xEF44

NodeID
0x0999

NodeID
0x099F

NodeID
0xE399

NodeID
0xEF40

NodeID
0xEF34

Basic Tapestry Mesh
(from PRR97)

Use of Tapestry Mesh
Randomization and Locality

Why simultaneous?
• Inserts will not always happen one at a time.

– Not practical to have one gateway to serialize
• Most simultaneous inserts completely

harmless (no interference), but handling bad
ones correctly is important

• Assumptions:
– No concurrent deletes (can be worked around)
– Messages always arrive, though no guarantee on

timely delivery

(Simultaneous) Insertion
•Find node with closest matching ID (surrogate)
and get preliminary neighbor table

– If surrogate’s is hole-free, so is this one.
•Find all nodes that need to put new node in
routing table via multicast
•Optimize neighbor table

– Very tricky & fun, touched on here.

•Want:
No fillable holes.

Neighbor Map
For “2175” (Octal)

Routing Levels
1234

1xxx

2175

0xxx

3xxx

4xxx
5xxx

6xxx

7xxx

20xx
2175

22xx

23xx

24xx
25xx

26xx

27xx

210x
211x

212x

213x

214x
215x

216x

2175

2170
2171

2172

2173

ø
2175

2176

2177

Neighbor Table

1

NodeID
0xE932

3

3

2

2
2

4

3

NodeID
0xEFBA

NodeID
0xEF37

NodeID
0xE324

NodeID
0xE555

NodeID
0xEF44

NodeID
0xEFB4

Need-to-know nodes
• Need-to-know = a node with a hole in

neighbor table filled by new node
• If 1234 is new node, and no 123s existed, must

notify 12?? nodes
• Acknowledged multicast to all matching nodes

• During this time, object requests may go
either to new node or former surrogate, but
old and new can forward requests
• New node knows old destination
• Once pointers moved, pre-insertion

destination knows new node.

Acknowledged Multicast
Algorithm

Locates & Contacts all nodes with a given prefix
• Create a tree based on IDs as we go
• Starting node knows when all nodes reached
• Nodes send acks when all children reached

5434554340

543??

5434?

The node then sends to any
?0345, any ?1345, any
?3345, etc. if possible

5431?

Multicast Breaks

• A is only 123
• B is only 124
• They need to find

out about each other
• But they don’t!

NodeID
0x1224

NodeID
0x1220

B
0x1244

A
0x1230

A B

B

A

What Goes Wrong?

• Suppose A & B add themselves.
– A is only 123
– B is only 124
– Both talk to same set (all 12 nodes)
– 123 is a “Need-to-Know” node for 124 &

vice-versa
– But multicasts could pass each other…

But it Gets Worse…
• Suppose X has prefix 12.
• A=1231 arrives. X adds A to table.
• B =1232 arrives.

– X adds B to table, drops A.
– Sends B’s message to A.

• C = 1233 arrives.
– X sends C’s message to B.

• B gets C’s message.
• A gets message about B’s.

A does not know about C!!

We Fill All Holes - Outline

• Multicast reaches all completely
inserted or core nodes. (Lemma 1)

• Any same-hole insertion arriving at a
node before A is found before A finishes
its multicast. So A has found all such
nodes by end. (Lemma 2)

• Any two different-hole insertions must
find each other.

Locking Pointers
• Problem in same hole case:

• multicast assumed that chosen node can
forward message

• Inserting nodes have incomplete information.
So…
• Pointers are added as “locked”. When

multicast for that node returns, pointers are
unlocked.

• Multicasts are sent to one unlocked pointer and
all locked pointers.

• Locked pointers may not be deleted.

Any unlocked pointer can reach all other
unlocked pointers.
Suppose it is true for all unlocked pointers until
A. Now consider next unlocked pointer.

– Knows all unlocked before its arrival, by
hypothesis.

– Knows locked when A arrived, since A’s
message was sent to them.

– Knows later arrivals, since they must have sent
message down A.

⇒ If X sends to one unlocked and all locked, all
nodes X has seen will get message.

Modified Multicast

• Message now includes:
– Hole node is filling
– A “watch list” of unfilled holes in neighbor

table
• Receivers now

– Forward multicast to hole if hole filled
– Send any nodes matching holes in watch

list to originator

•We want:
When A finishes its multicast, it has
informed all core need-to-know nodes and
it knows all the core nodes it needs to.
(no unfilled holes)

Two insertions conflict if there can be no
agreement on which the order in which
the insertions occurred.

New Multicast Fixes Problem

• A is only 123
• B is only 124
• They need to find

out about each other
• A needs to arrive

before B at only
ONE node.

NodeID
0x1224

NodeID
0x1220

B
0x1244

A
0x1230

A B

B

A

BA

Proof
• Multicast reaches all completely

inserted nodes. (Lemma 1)
• Any same-hole insertion arriving at a

node before A is found before A finishes
its multicast. So A has found all such
nodes by end. (Follows from pointer
locking)

• Any different-hole insertion must either
arrive
– Before or conflict (ok)
– After (then A gets multicast)

Lemma 1: Core Nodes
Reached

• Core node: multicast finished.
• Suppose some core node unreached.

Consider X, which was supposed to
send it towards core node.
– X is not finished inserting. Cannot be,

since X only fills holes.
– X is done inserting. But it must not have a

hole.

Finding Nearest Neighbor
• Let j be such that

surrogate matches new
node in last j digits of
node ID

• G = surrogate
A. G sends j-list to new

node; new node pings all
nodes on j-list.

B. If one is closer, G =
closest, goto A. If not,
done with this level, and
let j = j-1 and goto A.

j-list is closest
k=O(log n) nodes
matching in j digits

01234

01334

61524
32134

11111

Delete

republish

republish

republish

republish

republish

Conclusions
• Simultaneous insertion works.
• Deletion and details on insertion in

paper.
• Questions:

– How does delete interact with insert?
– Can we make optimization algorithm

better?

	Simultaneous Insertions in Tapestry
	This is going to be different…
	Related Work(no, this wasn’t in the original talk)
	Basic Tapestry Mesh(from PRR97)
	Use of Tapestry MeshRandomization and Locality
	Why simultaneous?
	(Simultaneous) Insertion
	Neighbor Table
	Multicast Breaks
	What Goes Wrong?
	But it Gets Worse…
	We Fill All Holes - Outline
	Modified Multicast
	New Multicast Fixes Problem
	Proof
	Lemma 1: Core Nodes Reached
	Finding Nearest Neighbor
	Conclusions

