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Motivation

• Traditional hierarchical web caching architectures require much maintenance
and human configuration.

• We have developed a web cache architecture which exploits the features of
OceanStore to be self-configuring/managing/maintaining.

– uses Tapestry to allow cache nodes to enter and leave the network without
impacting other caches

– uses Tapestry to locate objects in the network without explicit knowledge of
other caches

– uses excess resources in the network to cache more content

• What is the cost in performance of this new architecture?
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Components of the OceanStore Web Caching Architecture

• Client proxy.

– translates a user’s web requests to check the OceanStore web cache

– runs on same machine as user’s web browser

• HTTP to OceanStore gateway.

– convert web content into OceanStore documents

– hosted by regional cache provider

• Cache managers.

– work greedily to provide best level of service to clients in the local area

– run locally by department or organization
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The OceanStore Web Cache Architecture
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Client Proxy

• Check URL for hints on cacheability.

– cookies, CGI scripts, embedded variables...

– previously-accessed URL that was found to be uncacheable

• If uncacheable, forward the request to the origin server.

• If cacheable, translate the request and forward to the web cache.

• If the web cache responds, translate and server to the client; otherwise, forward
to the origin server.

• If time to retrieve the document was unreasonable, send a service request to
a nearby cache manager.
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Gateway

• Distributed throughout infrastructure.

• Published in Tapestry by a well-known GUID.

• Accept requests for documents missing from the cache.

• Retrieve document from the origin server.

• If cacheable, write the content into the web cache.

– create a new object and write the content into it

– update the object storing the content

• Key management isolated to this component.
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Cache Manager

• The introspective agent in the web cache architecture.

• Distributed throughout the infrastructure.

• Published in Tapestry by a well-known GUID.

• Respond to user access patterns by directing the number and location of repli-
cas.

• Most useful to nearby clients.

– run by organizations for the benefit of their users
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Scalability and Maintainability

• Tapestry allows nodes to enter and leave the network without notice.

• Tapestry allows us to locate service providers.

• No hierarchy or group configuration/maintenance.

• Efficient use of excess resources in the network.

• No network “hot-spots”.

• Greater aggregate read bandwidth.
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Implementation

• Built the proxy, gateway, and cache manager.

• The proxy and gateway are fully implemented as described above.

• The cache manager is a very limited implementation.

– forwards cache misses to the gateway

– on a cache miss, creates on replica of the document on a random node in
the system

– no further replica management
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Experimental Setup

• Ninety-eight (98) OceanStore nodes placed randomly on a 496-node transit
stub network.

– ˜150 ms inter-domain latency
– 10-50 ms intra-domain latency
– these latencies are 2x what we have observed

• Use Tapestry base of two bits

– results in location lookups of up to seven Tapestry hops longs

• Run on 42-node ROC cluster

– 8 OceanStore nodes per cluster node
– dual 1.0 GHz Pentium III CPUs
– 1.6 GB ECC PC133 SDRAM
– two 36 GB IBM hard drives
– gigabit ethernet

• Web server is run on the management node of the cluster.
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Internet Cache Protocol (ICP)

• A simple, light-weight, hierarchical caching scheme.

• Clients are configured to send all requests to a proxy.

• A proxy responds from a local cache or queries a number of peer caches for
the content.

• If no peer has the document, the proxy forwards the request to the next level in
the hierarchy.

• Cost of maintaining a set of peer caches is high.

• The foundation of many products.

– Squid, Cisco Cache Engine, Novell Internet Cache System, Microsoft Proxy
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Cache Latency

• Measure the latency of a single request.

• Cache miss.

– document is not cached on any node
– retrieve document from origin server after lookup fails

• Local hit.

– document is cached locally
– can return document immediately

• Remote hit.

– document is not cached locally but is cached on some node
– must find node with content cached and retrieve document

• Key difference between caches.

– OceanStore searches other caches through a series of serial Tapestry hops
– ICP searches other caches through a parallel multicast
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Cache Latency: Cache Miss
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• ICP cache waits to receive all nacks before requesting the document from the
origin server.

• OceanStore cache requests document from origin server when Tapestry re-
solves that the document is not published in the network.
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Cache Latency: Local Hit
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• Both caches respond very quickly when document is cached locally.

• OceanStore cache actually serves close content twice as fast as the ICP cache
(20 ms versus 35 ms).

– OceanStore cache can move content to the requesting client

– ICP cache can only move content to the proxy of the requesting client
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Cache Latency: Remote Hit - The Bad News
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• Can observe the effect of Tapestry’s hop-by-hop routing.

– highlights the importance of managing replicas to ensure content is close
to consumers

• OceanStore cache can actually serve content faster when it is nearby.
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Inspiration for Replica Placement Strategy

In a system of tributaries,
streams combine at a conflu-
ence to form larger streams.
Drops of water are routed
from tiny brooks through larger
streams to lakes, seas, and
oceans.

“Tributaries” by Rob Gonsalves.
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Inspiration for Replica Placement Strategy

In Tapestry, object location paths
combine at Tapestry nodes. Lo-
cation requests are routed from
the edges of the network toward
the object’s Tapestry root.
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Replica Placement Strategy

• Idea: Place replicas at the “conflu-
ence” of location paths.

• All clients “upstream” of the replica
will benefit from it.
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Ongoing Work

• Implement replica management in the cache managers.

• Explore use of Tapestry “time-outs” to reduce the cost of remote hits.

• Measure the effect of using idle resources in the network.

• Find appropriate workloads/load generators for measuring the system.
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Conclusions

• The performance of individual components is adequate.

• The key to good aggregate performance is effective replica management.

• Next steps: improve the responsiveness of the cache managers.
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