
Slide 1

Why do Internet services fail,
and what can be done about it?

David Oppenheimer
davidopp@cs.berkeley.edu

ROC Group, UC Berkeley

ROC Retreat, June 2002

Slide 2

Motivation
• Little understanding of real problems in
maintaining 24x7 Internet services

• Identify the common failure causes of real-
world Internet services
– these are often closely-guarded corporate secrets

• Identify techniques that would mitigate
observed failures

• Determine fault model for availability and
recoverability benchmarks

Slide 3

Sites examined
1. Online service/portal

– ~500 machines, 2 facilities
– ~100 million hits/day
– all service software custom-written (SPARC/Solaris)

2. Global content hosting service
– ~500 machines, 4 colo facilities + customer sites
– all service software custom-written (x86/Linux)

3. Read-mostly Internet site
– thousands of machines, 4 facilities
– ~100 million hits/day
– all service software custom-written (x86)

Slide 4

Outline
• Motivation

• Terminology and methodology of the study

• Analysis of root causes of faults and failures

• Analysis of techniques for mitigating failure

• Potential future work

Slide 5

Terminology and Methodology (I)
• Examined 2 operations problem tracking
databases, 1 failure post-mortem report log

• Two kinds of failures
– Component failure (“fault”)

» hardware drive failure, software bug, network switch
failure, operator configuration error, …

» may be masked, but if not, becomes a...
– Service failure (“failure”)

» prevents an end-user from accessing the service or a
part of the service; or

» significantly degrades a user-visible aspect of perf.
» inferred from problem report, not measured externally

– Every service failure is due to a component failure

Slide 6

Terminology and Methodology (II)

6 months21N/AReadMostly
1 month2099Content
4 months1885Online

period covered
in problem
reports

of
resulting

service failures

of
component
failures

Service

(note that the services are not directly comparable)

• Problems are categorized by “root cause”
– first component that failed in the chain of events

leading up to the observed failure
• Two axes for categorizing root cause

– location: front-end, back-end, network, unknown
– type: node h/w, node s/w, net h/w, net s/w, operator,

environment, overload, unknown

Slide 7

Component failure service failure
Component failure to system failure: Content

18

4

41

27

9

0

5
3

0

5

10

15

20

25

30

35

40

45

node operator node hardware node software net unknown

o
f in

cid
en

ts

component failure
system failure

Component failure to system failure: Online

10

32

10

4 6
3 46

1
4

0
3

0 1
0

5

10

15

20

25

30

35

node operator
node hardware
node softw

are
net operator
net hardware
net softw

are
net unknown

o
f in

co
de

nts

component failure
system failure

Slide 8

Service failure (“failure”) causes

9%81%10%0%ReadMostly
5%20%20%55%Content

28%72%Online

unknownnetback-endfront-end

Front-end machines are a significant cause of failure

33%5% 19%10%5% 14%ReadMostly
15%25%45% 5%Content
6%22%6% 17%33%Online

net
unk

node
unk

net
sw

node
sw

net
hw

node
hw

net
op

node
op

Operator error is largest cause of failure for two
services, network problems for one service

Slide 9

Service failure average TTR (hours)

1.20.17 (*)ReadMostly
1.2 (*)142.5Content

0.75 (*)10.29.7Online

netback-endfront-endaverage TTR in hrs

0.111.06.0 (*)0.17 (*) 0.13ReadMostly

1.2 (*)0.231.2Content

3.7 (4)1.7 (*) 0.5 (*)15Online

net
unk

net
sw

node
sw

net
hw

node
hw

net
op

node opaverage
TTR in hrs

(*) denotes only 1-2 failures in this category

Front-end TTR < Back-end TTR
Network problems have smallest TTR

Slide 10

Component failure (“fault”) causes

30%34%34%Content
19%5%76%Online

netback-endfront-end

Component failures arise primarily in the front-end

net
unk

1%1% 27%41% 1%4% 1%18% 1%Content
0%4% 5%12% 4%38% 5%12% 5%Online

envnode
unk

net
sw

node
sw

net
hw

node
hw

net
op

node
op

Operator errors are less common than hardware/
software component failures, but are less frequently
masked

Slide 11

Techniques for mitigating failure (I)
• How techniques could have helped

• Techniques we studied
1. testing (pre-test or online-test)
2. redundancy
3. fault injection and load testing (pre- or online)
4. configuration checking
5. isolation
6. restart
7. better exposing and diagnosing problems

Slide 12

Techniques for mitigating failure (II)

8better exposing/monitoring errors (TTR)
8better exposing/monitoring errors (TTD)
1pre-deployment correctness testing
1restart
2pre-deployment fault/load injection
2isolation
3configuration checking
3online fault/load injection
8redundancy
11online testing

of problems
mitigated (/19)

technique

Slide 13

Comments on studying failure data
• Problem tracking DB may skew results

– operator can cover up errors before manifests as a
(new) failure

• Multiple-choice fields of problem reports
much less useful than operator narrative
– form categories were not filled out correctly
– form categories were not specific enough
– form categories didn’t allow multiple causes

• No measure of customer impact
• How would you build an anonymized
meta-database?

Slide 14

Future work (I)
• Continuing analysis of failure data

– New site? (e-commerce, storage system vendor, …)
– More problems from Content and Online?

» say something more statistically meaningful about
• MTTR
• value of approaches to mitigating problems
• cascading failures, problem scopes

» different time period from Content (longitudinal study)
– Additional metrics?

» taking into account customer impact (customer-
minutes, fraction of service affected, …)

– Nature of original fault, how fixed?
– Standardized, anonymized failure database?

Slide 15

Future work (II)
• Recovery benchmarks (akin to dependability b/m’s)

– use failure data to determine fault model for fault injection
– recovery benchmark goals

» evaluate existing recovery mechanisms
• common-case overhead, recovery performance,

correctness, …
» match user needs/policies to available recovery mechanisms
» design systems with efficient, tunable recovery properties

• systems can be built/configured to have different
recoverability characteristics (RAID levels, check-
pointing frequency, degree of error checking, etc.)

– procedure
1. choose application (storage system, three-tier application,

globally distributed/p2p app, etc.)
2. choose workload (user requests + operator preventative

maintenance and service upgrade)
3. choose representative faultload based on failure data
4. choose QoS metrics (latency, throughput, fraction of

service available, # users affected, data consistency, data
loss, degree of remaining redundancy, …)

Slide 16

Future Work (III)
• Recovery benchmarks, cont.

– issues
» language for describing faults and their frequencies

• hw, sw, net including WAN, operator
• allows automated stochastic fault injection

» quantitative models for describing data
protection/recovery mechanisms

• how faults affect QoS
– isolated & correlated faults

• like to allow prediction of recovery behavior of
single component and systems of components

» synthesizing overall recoverability metric(s)
» defining workload for systems with complicated

interfaces (e.g., whole “services”)

Slide 17

Conclusion
• Failure causes

– operator error #1 contributor to service failures
– operator error most difficult type of failure to mask; generally

due to configuration errors
– front-end software can be a significant cause of user-visible

failures
– back-end failures, while infrequent, take longer to repair than do

front-end failures
• Mitigating failures

– online correctness testing would have helped a lot, but hard to
implement

– better exposing, monitoring for failures would have helped a lot,
but must be built in from ground up

– for configuration problems, match system architecture to actual
configuration

– redundancy, isolation, incremental rollout, restart, offline
testing, operator+developer interaction are all important (and
often already used)

Slide 18

Backup Slides

Slide 19

Techniques for mitigating failure (III)

lowlow
(false alarms)

mediumbetter exposing/
monitoring failures

zerozeromedium to highpre-deployment
testing

lowlowlowrestart

zerozerohighpre-deployment
fault/load injection

mediumlowmediumisolation

zerozeromediumconfig checking

medium to
high

highhighonline fault/load
injection

very lowlowlowredundancy

low to
medium

low to mediummedium to highonline correctness
testing

performance
impact

potential
reliability cost

implementation
cost

technique

Slide 20

Geographic distribution

1. Online service/portal

3. High-traffic Internet site

2. Global storage service

Slide 21

1. Online service/portal site

web proxy cache

(400 total)

x86/
Solaris

Internet
Load-balancing switch

(8)(8) stateless
workers
for
stateful
services
(e.g. mail,
news,
favorites)

(6 total)

SPARC/
Solaris

(6 total)

~65K users;
email, newsrc,
prefs, etc.

stateless
workers
for
stateless
services
(e.g.
content
portals)

(50 total)

SPARC/
Solaris

clients

storage of
customer
records, crypto
keys, billing info,
etc.

news article
storage

Filesystem-based storage (NetApp) Database

Slide 22

2. Global content hosting service site

Load-balancing switch

paired client service proxies

(14 total)

(100 total)

metadata
servers

Internet
to paired backup site

data storage servers

Slide 23

3. Read-mostly Internet site

Load-balancing switch

(30 total) web front-
ends

Internet

(3000 total)

Load-balancing switch

to paired backup site user
queries/
responses

user
queries/

responses

clients

to paired backup site

storage back-ends

	Why do Internet services fail, and what can be done about it?
	Motivation
	Sites examined
	Outline
	Terminology and Methodology (I)
	Terminology and Methodology (II)
	Component failure service failure
	Service failure (“failure”) causes
	Service failure average TTR (hours)
	Component failure (“fault”) causes
	Techniques for mitigating failure (I)
	Techniques for mitigating failure (II)
	Comments on studying failure data
	Future work (I)
	Future work (II)
	Future Work (III)
	Conclusion
	Backup Slides
	Techniques for mitigating failure (III)
	Geographic distribution
	1. Online service/portal site
	2. Global content hosting service site
	3. Read-mostly Internet site

