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Motivation
• Little understanding of real problems in 
maintaining 24x7 Internet services

• Identify the common failure causes of real-
world Internet services
– these are often closely-guarded corporate secrets

• Identify techniques that would mitigate 
observed failures

• Determine fault model for availability and 
recoverability benchmarks 



Slide 3

Sites examined
1. Online service/portal

– ~500 machines, 2 facilities
– ~100 million hits/day
– all service software custom-written (SPARC/Solaris)

2. Global content hosting service
– ~500 machines, 4 colo facilities + customer sites
– all service software custom-written (x86/Linux)

3. Read-mostly Internet site
– thousands of machines, 4 facilities
– ~100 million hits/day
– all service software custom-written (x86)
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Outline
• Motivation

• Terminology and methodology of the study

• Analysis of root causes of faults and failures

• Analysis of techniques for mitigating failure

• Potential future work
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Terminology and Methodology (I)
• Examined 2 operations problem tracking 
databases, 1 failure post-mortem report log

• Two kinds of failures
– Component failure (“fault”)

» hardware drive failure, software bug, network switch 
failure, operator configuration error, …

» may be masked, but if not, becomes a...
– Service failure (“failure”)

» prevents an end-user from accessing the service or a 
part of the service; or

» significantly degrades a user-visible aspect of perf.
» inferred from problem report, not measured externally 

– Every service failure is due to a component failure
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Terminology and Methodology (II)

6 months21N/AReadMostly
1 month2099Content
4 months1885Online

period covered 
in problem 
reports

# of 
resulting 

service failures

# of 
component 
failures

Service

(note that the services are not directly comparable)

• Problems are categorized by “root cause”
– first component that failed in the chain of events 

leading up to the observed failure
• Two axes for categorizing root cause

– location: front-end, back-end, network, unknown
– type: node h/w, node s/w, net h/w, net s/w, operator, 

environment, overload, unknown
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Component failure  service failure
Component failure to system failure: Content
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Component failure to system failure: Online
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Service failure (“failure”) causes

9%81%10%0%ReadMostly
5%20%20%55%Content

28%72%Online

unknownnetback-endfront-end

Front-end machines are a significant cause of failure

33%5%      19%10%5%     14%ReadMostly
15%25%45%   5%Content
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Operator error is largest cause of failure for two 
services, network problems for one service
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Service failure average TTR (hours)

1.20.17 (*)ReadMostly
1.2 (*)142.5Content

0.75 (*)10.29.7Online

netback-endfront-endaverage TTR in hrs

0.111.06.0 (*)0.17 (*)   0.13ReadMostly

1.2 (*)0.231.2Content
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(*) denotes only 1-2 failures in this category

Front-end TTR < Back-end TTR
Network problems have smallest TTR
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Component failure (“fault”) causes

30%34%34%Content
19%5%76%Online

netback-endfront-end

Component failures arise primarily in the front-end
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Operator errors are less common than hardware/
software component failures, but are less frequently 
masked
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Techniques for mitigating failure (I)
• How techniques could have helped

• Techniques we studied
1. testing (pre-test or online-test)
2. redundancy
3. fault injection and load testing (pre- or online)
4. configuration checking
5. isolation
6. restart
7. better exposing and diagnosing problems



Slide 12

Techniques for mitigating failure (II)

8better exposing/monitoring errors (TTR)
8better exposing/monitoring errors (TTD)
1pre-deployment correctness testing
1restart
2pre-deployment fault/load injection
2isolation
3configuration checking
3online fault/load injection
8redundancy
11online testing

# of problems 
mitigated (/19)

technique
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Comments on studying failure data
• Problem tracking DB may skew results

– operator can cover up errors before manifests as a 
(new) failure

• Multiple-choice fields of problem reports 
much less useful than operator narrative
– form categories were not filled out correctly
– form categories were not specific enough
– form categories didn’t allow multiple causes

• No measure of customer impact
• How would you build an anonymized 
meta-database?
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Future work (I)
• Continuing analysis of failure data

– New site? (e-commerce, storage system vendor, …)
– More problems from Content and Online?

» say something more statistically meaningful about
• MTTR 
• value of approaches to mitigating problems
• cascading failures, problem scopes

» different time period from Content (longitudinal study)
– Additional metrics?

» taking into account customer impact (customer-
minutes, fraction of service affected, …)

– Nature of original fault, how fixed?
– Standardized, anonymized failure database?
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Future work (II)
• Recovery benchmarks (akin to dependability b/m’s)

– use failure data to determine fault model for fault injection
– recovery benchmark goals

» evaluate existing recovery mechanisms
• common-case overhead, recovery performance, 

correctness, …
» match user needs/policies to available recovery mechanisms
» design systems with efficient, tunable recovery properties

• systems can be built/configured to have different 
recoverability characteristics (RAID levels, check-
pointing frequency, degree of error checking, etc.)

– procedure
1. choose application (storage system, three-tier application, 

globally distributed/p2p app, etc.)
2. choose workload (user requests + operator preventative 

maintenance and service upgrade)
3. choose representative faultload based on failure data
4. choose QoS metrics (latency, throughput, fraction of 

service available, # users affected, data consistency, data 
loss, degree of remaining redundancy, …)
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Future Work (III)
• Recovery benchmarks, cont.

– issues
» language for describing faults and their frequencies

• hw, sw, net including WAN, operator
• allows automated stochastic fault injection

» quantitative models for describing data 
protection/recovery mechanisms

• how faults affect QoS 
– isolated & correlated faults

• like to allow prediction of recovery behavior of 
single component and systems of components

» synthesizing overall recoverability metric(s)
» defining workload for systems with complicated 

interfaces (e.g., whole “services”)
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Conclusion
• Failure causes

– operator error #1 contributor to service failures
– operator error most difficult type of failure to mask; generally

due to configuration errors
– front-end software can be a significant cause of user-visible 

failures
– back-end failures, while infrequent, take longer to repair than do 

front-end failures
• Mitigating failures

– online correctness testing would have helped a lot, but hard to 
implement

– better exposing, monitoring for failures would have helped a lot, 
but must be built in from ground up

– for configuration problems, match system architecture to actual 
configuration

– redundancy, isolation, incremental rollout, restart, offline 
testing, operator+developer interaction are all important (and 
often already used)
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Backup Slides
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Techniques for mitigating failure (III)

lowlow
(false alarms)

mediumbetter exposing/ 
monitoring failures

zerozeromedium to highpre-deployment 
testing

lowlowlowrestart

zerozerohighpre-deployment 
fault/load injection

mediumlowmediumisolation

zerozeromediumconfig checking

medium to 
high

highhighonline fault/load 
injection

very lowlowlowredundancy

low to 
medium

low to mediummedium to highonline correctness 
testing

performance 
impact

potential 
reliability cost

implementation 
cost

technique
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Geographic distribution

1. Online service/portal

3. High-traffic Internet site

2. Global storage service
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1. Online service/portal site

web proxy cache

(400 total)

x86/ 
Solaris

Internet
Load-balancing switch

(8)(8) stateless 
workers 
for 
stateful
services 
(e.g. mail, 
news, 
favorites)

(6 total)

SPARC/
Solaris

(6 total)

~65K users; 
email, newsrc, 
prefs, etc.

stateless 
workers 
for 
stateless
services 
(e.g. 
content 
portals)

(50 total)

SPARC/
Solaris

clients

storage of 
customer 
records, crypto 
keys, billing info, 
etc.

news article 
storage

Filesystem-based storage (NetApp) Database
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2. Global content hosting service site

Load-balancing switch

paired client service proxies

(14 total)

(100 total)

metadata 
servers

Internet
to paired backup site

data storage servers
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3. Read-mostly Internet site

Load-balancing switch

(30 total) web front-
ends

Internet

(3000 total)

Load-balancing switch

to paired backup site user 
queries/ 
responses

user 
queries/ 

responses

clients

to paired backup site

storage back-ends
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