George Candea

A Utility-Centered Approach to Designing Dependable Internet Services

George Candea, Armando Fox

and other ROC-ers

Stanford University

Motivation

- Tradable properties ("ilities") in system design: functionality, usability, maintainability, performance, portability, security, availability, development cost, ...
- Examples of multiway tradeoffs:
 - Inktomi: data quality ↔ performance+availability+cost
 - Akamai: security+manageability ↔ performance+availability+cost
 - Yahoo: cost+portability \leftrightarrow performance+functionality
- Key observation: tradeoffs improve service by providing a better match between service properties and app requirements
- Small systems: right mix is a matter of optimization Giant scale: indispensable to the very possibility of building sys

ROC Retreat / Lake Tahoe / June 10, 2002

Issues

- Making the right tradeoffs is mostly art
- 75% of system deployments fail or don't meet requirements (Yankee Group, 1998)
- Deployment costs exceed expectations (Forrester Research: 25% of Fortune 1000 reported 10-49% higher costs)
- To make it engineering, we need three things:
 - 1. A straightforward model for the design space
 - 2. Simple, but comprehensive vocabulary for describing properties and the outcome of making tradeoffs
 - Step-by-step process for trading properties among each other to maximize usefulness of system

ROC Retreat / Lake Tahoe / June 10, 2002

Proposed Process

- Identify set of relevant axes that span design space in req spec ('spanning set' → any interesting tradeoff can be expressed in terms of the axes)
- 2. State system utility functions w.r.t. each axis
- Identify major design areas; choose representative design for each; then
 - find their coordinates in design space
 - compute overall utility by combining individual utilities
- Choose design area that maximizes utility; repeat w/in scope of chosen area

ROC Retreat / Lake Tahoe / June 10, 2002

→ iterative process, with successive refining

Bank of America (http://www.bofa.com)
System model: service takes inputs and must return outputs within specified amount of time
Spanning set for design space:

Quality of data: consistency with real account
Availability: % of requests that are completed as required
Berformance: Throughput and latency for reads/writes
Security: ITSEC levels
Gost of ownership: \$ amount/year (including initial cost, amortized over expected lifetime of system)

Design Space Navigation: Phase 1

- Region #1: distributed DB, geographically distributed app servers, distributed web servers, caches everywhere
- Region #2: centralized DB, app server, web servers; no web caches

Туре	Quality	Availability	Performance Latency	Performance Throughput	Security	Total Cost of Ownership	Overall multiply
#1	1.0	0.9 - 1.0	0.9 - 1.0	0.9 – 1.0	0	0.5-0.7	0
#2	1.0	0.2 - 0.4	0.8 - 0.9	0.6 - 0.8	0 - 1.0	0.7-0.9	0 - 0.26
→ choose Area #2							
13	ROC Retreat / Lake Tahoe / June 10, 2002			George Candea			

Design Space Navigation: Phase 2

- Design #1 (w/in Region #1): Sun Solaris 8, Oracle 8i, BEA WebLogic 7.0, Netscape-Enterprise 3.6
- Design #2 (w/in Region #2): RedHat Linux 7.2, proprietary DBMS, proprietary app server, Apache 2.0

Туре	Quality	Availability	Performance Latency	Performance Throughput	Security	Total Cost of Ownership	Overall
#1	1.0	0.2 - 0.4	0.8	0.8	0.5 – 1.0	0.7 - 0.8	0.05 - 0.21
#2	1.0	0.3 - 0.4	0.9	0.8	0 - 0.5	0.8 - 0.9	0 - 0.13
Choose #1 (much further refinement possible, config, etc.) ROC Remar/Lat Tabler/June 10, 2002 Govger Cauda							

by the processing of the processing of

Alternate View

- Design space = multidimensional hyperspace spanned by the axes described earlier and utility as an extra axis
- Candidate designs = "discrete manifold" in this space
- process of making tradeoffs is analogous to navigating this manifold
- Search for a global max with no cliffs around it (i.e., a smooth plateau) to ensure robustness
- Can break design up into orthogonal subsystems that only concern themselves with subspaces (thus, only some of the axes) → makes it easier to design and develop

ROC Retreat / Lake Tahoe / June 10, 2002

Benefits: Art vs. Engineering

17

- Make requirements and tradeoffs more explicit (thus, easier to evaluate <u>and</u> to change later)
- Closer match between requirements and delivered system
- <u>Use for dynamic adaptation</u> (blur design points into regions; at design time you choose region, at runtime you navigate w/in region to choose point)

ROC Retreat / Lake Tahoe / June 10, 2002

George Candea

Difficulties

18

- Stating utility functions can be a major effort
- Some properties are hard to quantify (note: we only need to to compare them, not measure on some absolute scale)
- Utility-centered design process may require hierarchical decomposition of axes (typically application-specific) → hierarchical utility composition
- Utility units must be uniform across all axes, to enable comparison
- The comparison must include the ability to say "how much better" one point is than another
- Unlike engineering, where you have struts, bolts, panels, etc. we are far from having standardized components in software engineering

ROC Retreat / Lake Tahoe / June 10, 2002

George Candea

More		
http:/	/RR.stanfor	d.edu
19	ROC Retreat / Lake Tahoe / June 10, 2002	George Candea