6/10/2002

A Utility-Centered Approach
to Designing Dependable Internet Services

George Candea, Armando Fox
and other ROC-ers

Stanford University

Motivation

= Tradable properties (“ilities”) in system design: functionality,
usability, maintainability, performance, portability, security,
availability, development cost, ...

= Examples of multiway tradeoffs:
e Inktomi: data quality « performance+availability+cost
e Akamai: security+manageability « performance-+availability+cost
e Yahoo: cost+portability « performance-+functionality

= Key observation: tradeoffs improve service by providing a
better match between service properties and app requirements

= Small systems: right mix is a matter of optimization
Giant scale: indispensable to the very possibility of building sys

2 ROC Retreat | Lake Taboe  June 10, 2002 George Candea

Issues

m  Making the right tradeoffs is mostly art

75% of system deployments fail or don’t meet requirements
(Yankee Group, 1998)

m Deployment costs exceed expectations (Forrester Research:
25% of Fortune 1000 reported 10-49% higher costs)

= To make it engineering, we need three things:
1. A straightforward model for the design space

2. Simple, but comprehensive vocabulary for describing properties
and the outcome of making tradeoffs

3. Step-by-step process for trading properties among each other to
maximize usefulness of system

3 ROC Retreat | Lake Tahoe June 10, 2002 George Candea

Proposed Process

1. Identify set of relevant axes that span design space in req spec
(“spanning set” > any interesting tradeoff can be expressed in terms of the axes)

2. State system utility functions w.r.t. each axis

3. ldentify major design areas;
choose representative design for each; then

e find their coordinates in design space
e compute overall utility by combining individual utilities

4. Choose design area that maximizes utility; repeat w/in scope of
chosen area

-> iterative process, with successive refining

4 ROC Retreat | Lake Taboe  June 10, 2002 George Candea

Bank of America (http://ww. bof a. com)

m System model: service takes inputs and must return
outputs within specified amount of time

m Spanning set for design space:
e Quality of data: consistency with real account
e Availability: % of requests that are completed as required
e Performance: Throughput and latency for reads/writes
e Security: ITSEC levels

e Cost of ownership: $ amount/year (including initial cost,
amortized over expected lifetime of system)

s ROC Retreat / Lake Tahoe June 10, 2002 George Candea

bof a. com: Quality of Data (Fidelity)

m Utility = how useful is a given level of quality

Utility [normalized]

1

0 T00 Quality [%]

6 ROC Retreat | Lake Tahoe/ June 10, 2002 George Candea.




6/10/2002

bof a. com: Availability

= Can choose salient points, then interpolate
Utility [normalized]

1

o 410+ Availabilty %]

7 ROC Retreat / Lake Tahoe/ June 10, 2002 George Candea

bof a. com: Performance/Latency

Utility [normalized]

1

Max. Latency [sec]

8 ROC Retreat | Lake Taboe  June 10, 2002 George Candea

bof a. com: Performance/Throughput

Utility [normalized]

1
Min. Throughput
0 1000 2000 [# responses / sec]
0 ROC Retest / Lake Tehoe / ane 10, 2002 George Candea

bof a. com: Security

Utility [normalized]

1

Security [ITSEC EAL]

01 2 3 45 6 7

10 ROC Retreat | Lake Taboe  June 10, 2002 George Candea

bof a. com: Cost

Utility [normalized]

1

TCO [M$/year]

u ROC Retreat / Lake Tahoe June 10, 2002 George Candea

Proposed Process Overview

3. ldentify major design areas;
choose representative design for each; then

e find their coordinates in design space
e compute overall utility by combining individual utilities

4. Choose design area that maximizes utility; repeat w/in scope of
chosen area

-> iterative process, with successive refining

2 ROC Retreat | Lake Tahoe/ June 10, 2002 George Candea.




6/10/2002

Design Space Navigation: Phase 1

Region #1: distributed DB, geographically distributed app
servers, distributed web servers, caches everywhere

Design Space Navigation: Phase 2

Design #1 (w/in Region #1): Sun Solaris 8, Oracle 8i, BEA
WebLogic 7.0, Netscape-Enterprise 3.6

m Region #2: centralized DB, app server, web servers; no web m Design #2 (w/in Region #2): RedHat Linux 7.2, proprietary
caches DBMS, proprietary app server, Apache 2.0
Type | Quality | Availability | Performance | Performance | Security | Total COSt. of | Overall Type | Quality | Availability | Performance | Performance | Security | Total Cost of | Overall
Latency Throughput Ownership | multiply Latency Throughput Ownership
#1 10 09-1.0 09-1.0 0.9-10 0 05-0.7 0 0.05 -
#1 10 02-04 08 08 05-10| 07-08 021
#2 1.0 02-04 0.8-0.9 06-0.8 0-10 0.7-0.9 0-0.26 0-
#H2 10 03-04 09 08 0-05 0.8-0.9 013
- ch Area #2 . " N
choose Area > choose #1  (much further refinement possible, config, etc.)
5 ROC Retreat / Leke Tahoe) e 10, 2002 George Candea 1 ROC Retreat Lake Tahoe e 10, 2002 George Candea
1 m Design space = multidimensional hyperspace spanned by the
axes described earlier and utility as an extra axis
2 m Candidate designs = “discrete manifold” in this space
3 = process of making tradeoffs is analogous to navigating this
manifold
L]
. m Search for a global max with no cliffs around it (i.e., a smooth
plateau) to ensure robustness
4. . .
= Can break design up into orthogonal subsystems that only
concern themselves with subspaces (thus, only some of the
- iterate until confidence band gets sufficiently narrow axes) > makes it easier to design and develop
s ROC Retreat / Leke Tahoe) e 10, 2002 George Candea 16 ROC Retreat  Lake Tahoe e 10, 2002 George Candea

Benefits: Art vs. Engineering

m Make requirements and tradeoffs more explicit (thus,
easier to evaluate and to change later)

m Closer match between requirements and delivered
system

m Use for dynamic adaptation (blur design points into

regions; at design time you choose region, at runtime
you navigate w/in region to choose point)

it ROC Retreat / Lake Tahoe June 10, 2002 George Candea

Difficulties

Stating utility functions can be a major effort

Some properties are hard to quantify (note: we only need to to
compare them, not measure on some absolute scale)

Utility-centered design process may require hierarchical
decomposition of axes (typically application-specific) >
hierarchical utility composition

Utility units must be uniform across all axes, to enable
comparison

= The comparison must include the ability to say “how much
better” one point is than another

= Unlike engineering, where you have struts, bolts, panels, etc.
we are far from having standardized components in software
engineering

1 ROC Rt/ Lake Taoe/ une 10,2002 George Candea




More...

http://RR stanford. edu

ROC Retreat / Lake Tahoe/ June 10, 2002 George Candea

6/10/2002



