
Towards a theory of Undo

Aaron Brown
UC Berkeley

June 2002 ROC Retreat



Slide 2

Outline
• Recap of Undo: motivation and the 3 R’s

• First implementation attempt & lessons learned

• Towards a theory for undo
– foundation: logging of application-level “verbs”
– modeling verbs and undo history
– properties of undo-wrappable systems

• Status and conclusions



Slide 3

Motivation for undo
• Human error is a major impediment to 
dependability
– largest single contributing factor to outages

• Undo is a recovery mechanism well-matched 
to coping with human (and non-human) error
– tolerates inevitable errors
– harnesses hindsight and provides retroactive repair

» ~70% of human errors are immediately self-detected
– supports trial & error exploration of complex systems

» allow operators to learn from mistakes



Slide 4

The 3R undo model
• Undo == time travel for system operators
• Three R’s for recovery

– Rewind: roll system state backwards in time
– Repair: change system to prevent failure

» e.g., edit history, fix latent error, retry unsuccessful 
operation, install preventative patch

– Replay: roll system state forward, replaying end-user 
interactions lost during rewind

• All three R’s are critical
– rewind enables undo
– repair lets user/administrator fix problems
– replay preserves updates, propagates fixes forward



Slide 5

Challenges in 3R undo model
• External consistency

– repair may alter state that’s previously been seen by 
an external entity

• Drawing the boundary of undo recovery
– want to recover content while allowing system state 

to change

• Providing multiple-granularity undo



Slide 6

First implementation attempt
• Undo wrapper for open source e-mail store

• Written in Java using BerkeleyDB for logging
– partially completed: IMAP only, no integration w/FS

Email Server
Includes:

- user state
- mailboxes
- application
- operating system

Non-overwriting
Storage

Undo
Log

3R Layer

3R
Proxy

State
Tracker

SMTP

IMAP

SM
TP

IMAP

control



Slide 7

Lessons learned during 1st try
• Undo wrapper is complex and error-prone

– deciding what to log is a challenge
– have to anticipate all possible external inconsistencies
– mechanics of log management & state tracking are ugly

• Ad-hoc approach doesn’t work
– bottom-up design => policy expressed procedurally

» hard to reason about, change, debug
– no framework for making policy decisions

• E-mail protocols are not conducive to undo-
wrapping
– no GUIDs, incomplete command set, ...



Slide 8

A theory for undo
• Goals:

– framework to reason about external inconsistencies 
generated by an undo cycle

– framework to reason about correctness of undo 
implementation

– template for undo-wrappable applications/services
– guide to a more general implementation

• Approach:
– model undo system structure and applications
– map example apps (e-mail) onto model
– build implementation following model



Slide 9

Foundation: undo system structure
• An undoable system consists of:

– an application with a well-defined, non-procedural user 
interface (a service)

– a stable storage layer supporting time travel
» snapshots, backups, non-overwriting/log-structured FS

– an undo wrapper that logs and replays user/operator 
interactions with the application

App. Service
Includes:

- user state
- application
- operating system

Time-travel
storage layer

Log

Undo
Wrapper

App protocol

control



Slide 10

Undo logging
• Logging must capture user intent, not actual 
state changes
– software may be buggy => state changes may be wrong
– repair, history deletions may invalidate physical logs
– easier to reason about consistency with intentional logs

• Undo system logs at a high semantic level
– user/operator application-level actions (verbs)
– higher-level than DBMS logical logging

• Fringe benefit: easy georeplication
– log shipping of high-level undo logs to remote site(s)
– undo system provides all mechanisms, including resync

» and vice versa: georeplicated systems easy to undo?



Slide 11

Modeling undo logging
• Application-client interface is specified as a 
set of verbs
– verbs define actions on logically-named state entities
– e-mail examples:

» deliver, fetch, set flags, delete, refile, create folder, ...

• Operations are instances of verbs
– reflect actual user/operator interaction

• The undo log is a history of operations
– during repair, the history may be modified
– and other changes may be made to the system that 

aren’t reflected in the history



Slide 12

Modeling operations
• Each logged operation is modeled by:

– a verb specifying the action
– a set of state entities needed to carry out the action
– a set of preconditions over the state entities

» if satisfied, operation will produce same results as 
previous execution

used to classify operation as safe or unsafe
– an indication of which state is modified
– an indication of which state is externalized
– a time specifying when results are externalized

» allows for delayed responses and “undo windows”
used to determine if unsafe state is externalized



Slide 13

Operations & external inconsistency
• An operation is safe upon replay iff:

– the operation existed, unmodified, in the pre-repair 
history

– all associated state entities exist
– all preconditions are met
– informally, the operation can execute and produces 

the same results as the original execution
• Unsafe operations represent potential 
external inconsistencies
– but only if the modified (unsafe) state is externalized 

later in the history
» determined by following dependencies in history



Slide 14

Classifying histories
• A history is replay-safe if:

– it contains only safe operations, OR
– no unsafe operation modifies state that is 

externalized by a later operation in the history
– these histories cause no visible inconsistencies
– all pre-repair histories are replay-safe

• A history is replay-acceptable if:
– it contains unsafe or deleted operations
– the history can be made replay-safe by inserting 

appropriate compensating actions
– these histories have acceptable visible inconsistency

• Undo requires replay-acceptable histories!



Slide 15

Making histories replay-acceptable
• Step 1: identify unsafe operations

– check preconditions and existence of needed state
– done dynamically during replay

• Step 2: insert compensating actions
– compensations are inherently application-specific
– explanatory compensations explain unsafe operations 

to user
» ex: “this message was deleted because it had a virus”

– repairing compensations alter state to reestablish 
preconditions

» ex: create “lost&found” to stand in for nonexistent or 
read-only e-mail folder



Slide 16

Example e-mail scenario
• Before undo:

– virus-laden message arrives
– user copies it into a folder without looking at it

• Operator invokes undo to install virus filter
• During replay:

– message is redelivered and discarded by virus filter
– copy operation is unsafe

» violated precondition: existence of source messsage
– copy operation externalizes existence of message

» history is replay-unsafe
– compensating action: insert placeholder for message

» now copy can be executed; history is replay-acceptable



Slide 17

Guaranteeing replay-acceptability
• A dependable undo system must be able to 
make any history replay-acceptable
– operation templates (verbs) must be specified 

correctly
» all needed preconditions and no extraneous ones

– compensations must exist for all precondition 
violations

» explicit compensations or dummy compensations that 
allow the inconsistency to pass through

– precondition and compensation logic must be correct
» model identifies cases for exhaustive testing



Slide 18

Recap: model benefits
• Simplifies reasoning about undo inconsistency

– expressed in terms of preconditions & compensations
• Provides greater confidence in undo

– by construction, if preconditions are correct and 
compensations exist, all scenarios will produce 
acceptable external consistency

– declarative specifications of verbs, preconditions, and 
compensations are easier to write and check

– model provides guidance for exhaustive testing
• Provides framework for general implementation

– can separate app-specific policy from undo mechanisms
• Implicitly defines properties of applications 

that can be wrapped for undo



Slide 19

Implications for applications
• Model induces a set of properties for undo-
wrappable applications
– a high-level, verb-structured interface/API for user, 

operator, and external actions
– a state model where all state is nameable via the API 

and tagged with GUIDs
– a “complete” API where each an inverse for each verb 

exists or can be constructed
– external consistency semantics that permit 

compensation for non-commuting or non-replayable
verbs



Slide 20

Implications for applications
• Model induces a set of properties for undo-
wrappable applications
+ a high-level, verb-structured interface/API for user, 

operator, and external actions
– a state model where all state is nameable via the API 

and tagged with GUIDs
– a “complete” API where each an inverse for each verb 

exists or can be constructed
+ external consistency semantics that permit 

compensation for non-commuting or non-replayable
verbs

• Example: IMAP/SMTP-based e-mail



Slide 21

Possible future benefits
• Automated consistency analysis

– model allows identification of non-replay-safe histories
» as described, cannot be done statically since 

preconditions are dynamic
– model could be extended to pre-compute expected 

inconsistencies before executing repair/replay
» “what-if” analysis of repair impact
» requires expanding verb definitions with specification of 

expected state changes
– given buggy software and arbitrary repairs, automated 

analysis would be just a hint
» would provide “best-case” answer assuming perfect SW
» could compare with dynamic analysis to identify bugs?



Slide 22

Status and conclusions
• Status

– continuing model development using e-mail as driver
» next step: try to better formalize compensations

– restarting implementation to follow the model
» declarative specification of verbs and a general 

mechanism layer

• Conclusions
– model-based approach to undo provides needed 

framework for reasoning about undo behavior
» simplifies specification of application policy
» enhances confidence in implementation
» may lead to automated “what-if” consistency analysis



Slide 23

Properties of operations
• Two operations O1 and O2 commute if:

– O1 and O2 have disjoint state sets, OR
– state modified by O1 is not part of O2’s state set, OR
– O1’s modifications to common state do not violate O2’s 

preconditions and are not externalized by O2
– essentially, O2 isn’t affected by changes to O1

• An operation is replayable if:
– all needed state exists at replay time
– all preconditions are satisfied at replay time
– the operation succeeded, or, if it failed, the time 

between failure and replay is less than the delay


	Towards a theory of Undo
	Outline
	Motivation for undo
	The 3R undo model
	Challenges in 3R undo model
	First implementation attempt
	Lessons learned during 1st try
	A theory for undo
	Foundation: undo system structure
	Undo logging
	Modeling undo logging
	Modeling operations
	Operations & external inconsistency
	Classifying histories
	Making histories replay-acceptable
	Example e-mail scenario
	Guaranteeing replay-acceptability
	Recap: model benefits
	Implications for applications
	Implications for applications
	Possible future benefits
	Status and conclusions
	Properties of operations

