What belongs in state storage API's?

m Problem: often can get by with less-than-ACID, but most
widely-used state API’s (DB, filesys) don't let you express
constraints on consistency, ordering, etc.

e Contrast Bayou: every update can carry a predicate and a conflict
resolution function

m What about filesystem API?
e Most apps deal with objects or data structures, not files

e Filesystem API is impoverished (if you want to preserve interface
compatibility)

m What about DB's, which have “nicest” properties?

e Often overkill, but cost of using is rarely exposed to developer
(until system is deployed at scale...)

© 2002 Armando Fox

EEEEEEEEEEEEEEEEEEEEEEEEEE



What kinds of API’'s to think about?

m We should think in terms of object store/object access
layer, not necessarily filesystem. DB is one kind of object
store whose model is optimized to support a specific set
of operations (relational queries).

e What about providing support for RMW-type operations, rather
than always separating “read” from “compute™?

e UDF's in Exokernel: “Here is a function that operates on...”

e Could annotate function properties (deterministic? commutative?
etc) and let storage subsystem schedule them

e Challenge: desired ops likely to be app-specific; can we do
something like this in an extensible manner? (recall Hellerstein’s
GIST)

© 2002 Armando Fox




What should be in the API?

m State storage API should reflect things about the
implementation that would be really hard to add on top if
they weren't built in.

e What should be “expressible” by state storage API?

e Typically seen in customer apps (James): read-only, ACID,
queued updates, near-real-time, time-travel, 2 phase commit

e Things that are hard to add after the fact: "Time travel” or

versioning, atomic ops over groups of objects (vs. over single
object)

e Challenge: should attributes be associated with data, or with
methods?

© 2002 Armando Fox




	What belongs in state storage API’s?
	What kinds of API’s to think about?
	What should be in the API?

