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• Durability
– Data is stored for centuries or longer.

• Verifiability.
– Data is not subject to substitution attacks.

• Availability.
– Data is accessible most of the time.

• Where most is defined in n 9’s of availability.

• Maintainability.
– System recovers from server and network failures.
– Efficiently incorporates new resources.

• Atomicity.
– Updates are applied atomically.

• Privacy.
– Information is only visible to those who have access rights.

• Performance.
– Response time is bounded.

Global-Scale Archival Goals

• Archive Data Structures.
– Archive is a linearly ordered sequence of versions.
– Each version is a read-only sequence of bytes.
– E.g. an archive might be a file, a directory, or a database

record.

• Naming.
– Globally-Unique IDentifier (GUID).
– Archives are uniquely specified by archive GUIDs (A-

GUIDs).
– Within an archive, each version is specified by a version 

GUID (V-GUID).
• Versions are immutable and provide for time-travel .

• Operations.
– Update Operations.

• Add versions to the end of the version sequence of a given archive.
– Read Operations.

• Read data from a specific version.

• Serializer provides consistency.
– Entity in network that provides atomicity.
– Provides an A-GUID to V-GUID mapping.
– Creates a serial order over simultaneously submitted updates.
– Verifies that the client has update privileges.
– Atomically applies update to the archive and generates a new 

V-GUID.
– Sends fragments from an update to storage servers.

• Generate new archive interface.
– create(name, identity, keys) => A-GUID.

• Query Interface.
– query(A-GUID, Specifier) => V-GUID.

• Specifier => timestamp, version#, etc.

• Read interface.
– read(V-GUID, offset, length) => data.

• Write interface.
– write(A-GUID, data) =>V-GUID.
– append(A-GUID,data) =>V-GUID.
– replace(V-GUID,offset,data,allowbr) => V-GUID or null.

• allowbr denotes whether operation allowed to generate branch.

Interface

• Erasure codes provide redundancy without 
overhead of replication.
– Divide an object into m fragments.
– Recode them into n fragments.
– A rate r = m/n code increases storage cost by a 

factor of 1/r .
– Key property is that original object can be 

reconstructed from any m fragments. 
– E.g. using an r = ¼  code, divide a block into m = 16 

fragments, and encode the original m fragments into n 
= 64 fragments.

• Increases storage cost by a factor four.

• Example implementations
– Reed-Solomon Codes.
– Tornado Codes.
– Interleaved Reed-Solomon.

Background
• An archive is implemented on a collection of independently 

failing disks.
• Failed disks immediately replaced by new, blank ones.
• Each archival fragment for a given block is placed on a 

unique, randomly selected disk.
• A repair epoch.

– Time period between a global sweep, where a repair process scans
the system, attempting to restore redundancy.

Assumptions
• Exploits the statistical stability of a large number 

number of components

» Po - Probability that an object is available. 
» n - total number of fragments.
» m - number of fragments needed for reconstruction.
» N - total number of machines in the world.
» M - number of currently unavailable machines.

• E.g. given 90% of a million machines availability:
– n = 16 fragments, rate r = ½, yield 5 9’s of availability.
– n = 32 fragments, rate r = ½, yield 8 9’s of availability.

Availability

Durability

Performance

• Tapestry is a location-independent routing 
infrastructure.
– Fragments and serializers are both named by opaque bit-

strings (GUIDs).
– Tapestry can perform location-independent routing of 

messages directly to objects using only GUIDs.
– Tapestry is an IP overlay network that uses a distributed, 

fault-tolerant architecture to track the location of every 
object in the network.

– Tapestry has two components: a routing mesh and a 
distributed directory service. 

• Routing in Tapestry.
– Nodes are connected to other nodes via neighbor links.
– Any node can route to any other by resolving one digit at a 

time: 
• e.g. 1010 => 2218 => 9098 => 7598 => 4598

– Each GUID is associated with one particular Root node.

• Publish.
– send a message toward the root.
– leaving back-pointers at each hop. 
– E.g node 4432 stores a fragment 

with GUID name 4598.
• Publish steps: 4432 => B4F8 => 9098 =>

7598 => 4598

• Look-up.
– Clients and serializers locate 

fragments by sending a message 
toward a root. 

– until they encounter enough pointers.
– E.g. Client 0325 can locate two 

fragments after only two hops: 0325 
=> B4F8 => 9098.
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• The OceanStore archive combines several techniques 
to satisfy the goals of a  global-scale archival 
system.
– Erasure codes provide durability and availability.
– Verification trees provide verifiability
– Introspective failure analysis, automatic repair, and location 

independent routing promote maintainability.
– The serializer provides atomicity.
– End-to-end encryption (not discussed in this poster) 

provides privacy.

• Result.
– Archival storage that is online and inline.

– Data is durable and accessable.
– Archival storage that has good user perceived latency.

Conclusion
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• Local.
– Durability enhancement techniques such as RAID.
– Servers proactively copy data to new disk.
– Servers periodically verify the integrity of local data.

• Distributed.
– Exploit Tapestry’s distributed information and locality 

properties.

• Global.
– Not as affective as distributed mechanisms.

Fragment 3:

Fragment 4:

Data: 

Fragment 1:

Fragment 2:

H2 H34 Hd F1 - fragment data

H14 data

H1 H34 Hd F2 - fragment data

H4 H12 Hd F3 - fragment data

H3 H12 Hd F4 - fragment data

F1 F2 F3 F4
H1 H2 H3 H4

H12 H34

H14

B-GUID

Hd

Data Encoded Fragments

• Top hash is a block GUID (B-GUID). 
– Fragments and blocks are self-verifying.

Archival Process: Data Integrity

Archival Model

Case for Erasure Codes

Future Directions

Throughput

Enabling Technology: Tapestry

• Fraction of Blocks Lost Per Year (FBLPY)*
– r = ¼, erasure-encoded block. (e.g. m = 16, n = 64)
– Increasing number of fragments, increases 

durability of block 
• Same storage cost and repair time.

– n = 4 fragment case is equivalent to replication on 
four servers.

Making the Archive Real
Hakim Weatherspoon and John D. Kubiatowicz

http://oceanstore.cs.berkeley.edu
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Latency

Throughput vs. UpdateSize
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Update Throughput vs. Update Size
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Update Latency vs. Archival Mode
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Archival Mode
• No archiving
• Inlined archiving

• Synchronous
• m = 16, n = 32

• Delayed archiving
• Asynchronous
• m = 16, n = 32
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