
Decoder

Routing Layer

Application

Routing Layer

Encoder / Decoder

Update Mechanism

Serializer

read(V-GUID)

Routing Layer

Local Storage

write(A-GUID,…)

V-GUID

fragments

fragments

Decoder

Routing Layer

Application

Storage

Server

Client

Routing Layer

Local Storage

Routing Layer

Local Storage

Routing Layer

Local Storage

Routing Layer

Local Storage

• Durability
– Data is stored for centuries or longer.

• Verifiability.
– Data is not subject to substitution attacks.

• Availability.
– Data is accessible most of the time.

• Where most is defined in n 9’s of availability.

• Maintainability.
– System recovers from server and network failures.
– Efficiently incorporates new resources.

• Atomicity.
– Updates are applied atomically.

• Privacy.
– Information is only visible to those who have access rights.

• Performance.
– Response time is bounded.

Global-Scale Archival Goals

• Archive Data Structures.
– Archive is a linearly ordered sequence of versions.
– Each version is a read-only sequence of bytes.
– E.g. an archive might be a file, a directory, or a database

record.

• Naming.
– Globally-Unique IDentifier (GUID).
– Archives are uniquely specified by archive GUIDs (A-

GUIDs).
– Within an archive, each version is specified by a version

GUID (V-GUID).
• Versions are immutable and provide for time-travel .

• Operations.
– Update Operations.

• Add versions to the end of the version sequence of a given archive.
– Read Operations.

• Read data from a specific version.

• Serializer provides consistency.
– Entity in network that provides atomicity.
– Provides an A-GUID to V-GUID mapping.
– Creates a serial order over simultaneously submitted updates.
– Verifies that the client has update privileges.
– Atomically applies update to the archive and generates a new

V-GUID.
– Sends fragments from an update to storage servers.

• Generate new archive interface.
– create(name, identity, keys) => A-GUID.

• Query Interface.
– query(A-GUID, Specifier) => V-GUID.

• Specifier => timestamp, version#, etc.

• Read interface.
– read(V-GUID, offset, length) => data.

• Write interface.
– write(A-GUID, data) =>V-GUID.
– append(A-GUID,data) =>V-GUID.
– replace(V-GUID,offset,data,allowbr) => V-GUID or null.

• allowbr denotes whether operation allowed to generate branch.

Interface

• Erasure codes provide redundancy without
overhead of replication.
– Divide an object into m fragments.
– Recode them into n fragments.
– A rate r = m/n code increases storage cost by a

factor of 1/r .
– Key property is that original object can be

reconstructed from any m fragments.
– E.g. using an r = ¼ code, divide a block into m = 16

fragments, and encode the original m fragments into n
= 64 fragments.

• Increases storage cost by a factor four.

• Example implementations
– Reed-Solomon Codes.
– Tornado Codes.
– Interleaved Reed-Solomon.

Background
• An archive is implemented on a collection of independently

failing disks.
• Failed disks immediately replaced by new, blank ones.
• Each archival fragment for a given block is placed on a

unique, randomly selected disk.
• A repair epoch.

– Time period between a global sweep, where a repair process scans
the system, attempting to restore redundancy.

Assumptions
• Exploits the statistical stability of a large number

number of components

» Po - Probability that an object is available.
» n - total number of fragments.
» m - number of fragments needed for reconstruction.
» N - total number of machines in the world.
» M - number of currently unavailable machines.

• E.g. given 90% of a million machines availability:
– n = 16 fragments, rate r = ½, yield 5 9’s of availability.
– n = 32 fragments, rate r = ½, yield 8 9’s of availability.

Availability

Durability

Performance

• Tapestry is a location-independent routing
infrastructure.
– Fragments and serializers are both named by opaque bit-

strings (GUIDs).
– Tapestry can perform location-independent routing of

messages directly to objects using only GUIDs.
– Tapestry is an IP overlay network that uses a distributed,

fault-tolerant architecture to track the location of every
object in the network.

– Tapestry has two components: a routing mesh and a
distributed directory service.

• Routing in Tapestry.
– Nodes are connected to other nodes via neighbor links.
– Any node can route to any other by resolving one digit at a

time:
• e.g. 1010 => 2218 => 9098 => 7598 => 4598

– Each GUID is associated with one particular Root node.

• Publish.
– send a message toward the root.
– leaving back-pointers at each hop.
– E.g node 4432 stores a fragment

with GUID name 4598.
• Publish steps: 4432 => B4F8 => 9098 =>

7598 => 4598

• Look-up.
– Clients and serializers locate

fragments by sending a message
toward a root.

– until they encounter enough pointers.
– E.g. Client 0325 can locate two

fragments after only two hops: 0325
=> B4F8 => 9098.

CE42

4432
3A40

1010

L1

L2
L3

L4

L1

L2
L2

L1

L1

0128

B4F8
2218

9598

3598

4598

9098

Root

7598

Fragment-1

Fragment-2

0325
Client

L4

L4

L1 L1

L1

L2

L2

L1

• The OceanStore archive combines several techniques
to satisfy the goals of a global-scale archival
system.
– Erasure codes provide durability and availability.
– Verification trees provide verifiability
– Introspective failure analysis, automatic repair, and location

independent routing promote maintainability.
– The serializer provides atomicity.
– End-to-end encryption (not discussed in this poster)

provides privacy.

• Result.
– Archival storage that is online and inline.

– Data is durable and accessable.
– Archival storage that has good user perceived latency.

Conclusion

3274

4577

5544

AE87
3213

9098

1167

6003

0128

L2L2

L1

L1

L2

L2

L3

L3

L2

L1
L1

L2L3

L2

Ring of L1
Heartbeats

• Local.
– Durability enhancement techniques such as RAID.
– Servers proactively copy data to new disk.
– Servers periodically verify the integrity of local data.

• Distributed.
– Exploit Tapestry’s distributed information and locality

properties.

• Global.
– Not as affective as distributed mechanisms.

Fragment 3:

Fragment 4:

Data:

Fragment 1:

Fragment 2:

H2 H34 Hd F1 - fragment data

H14 data

H1 H34 Hd F2 - fragment data

H4 H12 Hd F3 - fragment data

H3 H12 Hd F4 - fragment data

F1 F2 F3 F4
H1 H2 H3 H4

H12 H34

H14

B-GUID

Hd

Data Encoded Fragments

• Top hash is a block GUID (B-GUID).
– Fragments and blocks are self-verifying.

Archival Process: Data Integrity

Archival Model

Case for Erasure Codes

Future Directions

Throughput

Enabling Technology: Tapestry

• Fraction of Blocks Lost Per Year (FBLPY)*
– r = ¼, erasure-encoded block. (e.g. m = 16, n = 64)
– Increasing number of fragments, increases

durability of block
• Same storage cost and repair time.

– n = 4 fragment case is equivalent to replication on
four servers.

Making the Archive Real
Hakim Weatherspoon and John D. Kubiatowicz

http://oceanstore.cs.berkeley.edu

1.E-70

1.E-60

1.E-50

1.E-40

1.E-30

1.E-20

1.E-10

1.E+00

0 6 12 18 24
Repair Time (Months)

Pro
ba

bil
ity

 of
 Bl

oc
k F

ailu
re

pe
r Y

ear

n = 4 fragments
n = 8 fragments
n = 16 fragments
n = 32 fragments
n = 64 fragments

Efficient Repair

Latency

Throughput vs. UpdateSize

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000

UpdateSize (kB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Delayed Archive

Inlined Archive

No Archive

Update Throughput vs. Update Size

0

10

20

30

40

50

60

1 10 100 1000 10000

Update Size (kB)

T
o

ta
l U

p
d

at
e

O
p

er
at

io
n

s
p

er
 S

ec
o

n
d

Delayed Archive

Inlined Archive

No Archive

latency vs. size

y = 0.6x + 29.6

y = 0.3x + 3.0

y = 1.2x + 36.4

0

10

20

30

40

50

60

70

80

2 7 12 17 22 27 32

UpdateSize (kB)

L
a
te

n
c
y
 (

in
 m

s
)

Inlined Archive

No Archive

Only Archive

Update Latency vs. Archival Mode

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

Latency (ms)

C
u

m
u

la
tiv

e
P

er
ce

n
t

o
f

R
eq

u
es

ts

Delayed Archive
Inlined Archive

Archival Mode
• No archiving
• Inlined archiving

• Synchronous
• m = 16, n = 32

• Delayed archiving
• Asynchronous
• m = 16, n = 32

Read Latency

0

20

40

60

80

100

120

140

160

180

200

2 7 12 17 22 27 32

Update Size (kB)

Late
ncy

 (ms
)

