
Hash-History Approach for Reconciling Mutual Inconsistency in Optimistic Replication
B. Hoon Kang, Robert Wilensky and John Kubiatowicz ({hoon,wilensky,kubi}@cs.berkeley.edu)

CS Division, UC Berkeley

Effectiveness Analysis

• Version Vectors are widely used in reconciling replicas
– In weakly consistent replication systems(Bayou and Ficus)
– Not assuming a synchronized timestamp nor centralized update

serializer
• Doesn’t scale as number of replicas increases

– Version vector needs one entry for each replica
– Size of vector grows in proportion to number of replicas
– Complexity of management grows as new replicas added or deleted

• Hash History Approach
– Each site keeps a record of the hash of each version
– The sites exchange the list of hashes in reconciling replicas
– The most recent common ancestral version can be found, if no version dominates

• Useful hints in a subsequent diffing/merging

• Scalable to thousands of sites
– Hash lists grows in proportion to number of update instances not number of sites
– The number of update instances can be bounded by flushing out obsolete hashes

• Simple to maintain
– No need to track which site made changes
– Only track what are changes there have been so far

• No need to naming the sites
– Suitable for ad-hoc peer-to-peer networks

S ite A

V 0

S ite B

V 1 = a1 (V 0)

V 0

a 1

S ite C

V 0

V 2 = b 1 (V 0)

b 1

V 3 = c 1 (V 0)

c 1

V 4 = m a 2 (V 1 ,V 2)
= m a 2 (a 1 (V 0),b 1 (V 0))
L et V 4 = a 1 (b 1 (V 0))

m a 2

V 5 = m c 2 (V 4 ,V 3)
= m c 2 (a 1 (b 1 (V 0)),c 1 (V 0))
L e t V 5 = c 1 (a 1 (b 1 (V 0)))

m c 2

Site A

V0

Site B

V1 = a1(V0)

V0

a1

Site C

V0

V2 = b1(V0)

b1

V3 = c1(V0)

c1

V4 = ma2(V1,V2)
= ma2(a1(V0),b1(V0))
Let V4 = a1(b1(V0))

ma2

V5 = mc2(V4,V3)
= mc2(a1(b1(V0)),c1(V0))
Let V5 = c1(a1(b1(V0)))

mc2

001
CBA

000
CBA

012
CBA

000
CBA

000
CBA

010
CBA

100
CBA

212
CBA

Site A

V0

Site B

V1 = a1(V0)

V0

a1

Site C

V0

V2 = b1(V0)

b1

V3 = c1(V0)

c1

V4 = ma2(V1,V2)

ma2

V5 = mc2(V4,V3)
mc2

H(V0)

H(V2):b1

H(V0)

H(V3):c1

H(V0)

H(V1):a1

H(V0) H(V0) H(V0)

H(V4):ma2

H(V0)

H(V2):b1H(V1):a1

H(V4):ma2

H(V0)

H(V2):b1H(V1):a1 H(V0)

H(V3):c1

H(V5):mc2

Freenet Dri Squirrel-
mail

Events 2281 10137 1077

Users 64 21 39

Duratio
n

12/28/1
999-
4/25/20
02

4/27/199
4 -
5/3/2002

11/18/1999
-
4/17/2002

Total A==B A dom B
B dom A

Conflict

Freenet
VV

1315 20 291 1004

Freenet
HH

1315 20 291 1004

Smail
VV

1556 44 532 980

Smail
HH

1556 44 532 980

Dri VV 6629 543 3289 2797

Dri HH 6629 543 3289 2797DRI proje ct (4/27/1994 - 5/3/2002) ran on NAPA

0
20
40
60
80

100
120
140
160

0 10000 20000 30000

s um of HH s ize se nde r and re ceiver

re
co

nc
ile

 ti
m

e

 1

 2

 3

VersionVector

0

50

100

150

200

250

0 200 400 600

VV size (# of entries)

R
ec

on
ci

le
 ti

m
e

Conflict frequency as function of anti-
entropy

-500

0

500

1000

1500

0 2000 4000

number of anti-entropy

co
nf

lic
t f

re
qu

en
cy

Conflict
in VV

Conf lict
in HH

Total A==B AdomB
BdomA

Conflict

Freenet
VV

1315 29 311 975

Freenet
HH

1315 36 411 868

Smail
VV

1556 39 480 1037

Smail
HH

1556 48 564 944

Dri VV 6629 513 3395 2721

Dri HH 6629 907 3989 1733

• We measured the reconcile time that needs to be spent
– to determine the version dominance and
– to manage the data structures

• The reconcile time
– for hash history grows linearly as a function of number of revisions

(writes) and
– for the version vector as a function of number replica sites.

• The reconcile time as a function of HH size.
– Line 1 indicates the constant time table lookup is happened and
– line 2 indicates the time to accept the hash history when one dominates

the other.
– Line 3 shows the time to do conflict merging which involves updating

both sender and receiver hash history

• Optimistic replication has been widely used in distributed systems
to achieve increased availability and performance.

• The definition of “optimistic”
– allows the replica to be updated in any place
– and later converges to a consistent state by reconciling with each other the

updates that each site has accrued independently.

• The reconciliation process between replicas
– needs a mechanism to determine the version dominance (i.e. which version

is newer) or the update-conflict.

Hash History Pruning
Simulation Result

• Aging with Loosely Synchronized Clocks
– The classical techniques

• The global-cutoff timestamp (Lynch et al) and the acknowledgement-timestamp (Golding et al)
• however, this method fundamentally requires to track the committed state per each site,
• hence it would not scale to thousands of sites.

– We chose to use the simplistic aging method based on roughly synchronized
timestamp.

• Highly Sharable Archived Hash History
– Unlike version vectors, the hash-history for the shared data can be easily shared

among many sites
– since it does not contain site-specific information rather it contains the histories of the

shared object.
– One can easily convinced that archiving the old history at one of the primary sites

should be good enough to handle the special case: the version that belongs to the
obsolete (pruned) hash-history can be mistakenly considered as a new version.

• Pruning with CSN and OSN
– CSN (a monotonically increasing commit sequence number assigned by the primary

site) to determine the fact a certain version belongs to the retired section or not.
– A primary site can declare a retired version using OSN (Omitted Sequence Number)
– Each site can prune its hash history aggressively by recording the OSN (Omitted

Sequence Number) as the largest CSN of all the retired writes.
– Later, the OSN is compared with the CSN of the latest version from the other site.

• If OSN is bigger (newer) than CSN then the latest version from the other site is too old to be
considered.

• Version Graph Example Above,
– where a1, b1, and c1 are operations (or delta). ma2 and mc2 are merge

operations.
– Each site originally has V0.

• Site A initiates reconciliation with site B and site A merges the state (i.e
version) V1 and V2 by deciding the ordering as b1 and a1.
– If site B merges V1 and V2 the ordering may be different than that of site A.
– If operations(a1,b1) are commutative, the outcome would be the same.

• Later, site C initiates reconciliation with site A and merges the version
V4 and V5 by deciding the ordering as b1, a1 and c1.

OceanStore Summer Retreat, June 10-12, Lake Tahoe

• We ran the simulation based
on the traces that we collected
from the cvs-logs of some
active projects on
sourceforge.net.

• We use a deterministic merge policy to simulate a deterministic merge behavior
– so that two different schedules of deltas provide the same output.
– When two hash histories are merged,

• we have the merge process to automatically pick the one with higher timestamp as a new version.
• And we incremented this new version’s hash so that it can be distinguishable from its parents.

• Surprisingly, the result was not completely the same.
– The hash history based approach was able to detect the equality of versions while the version vector

reports it as a conflict.
• Hash history was able to capture the state when two sets of non-commutative operations

produce the same result independently.
– We also found that this property helps more to reduce the number of conflicts in overall system,
– especially when the merge process was able produce the same version regardless of which site

merged the conflicting writes.
– It does not necessarily require the operations (writes) are commutative.

• We believe this is quite interesting
– since most applications for optimistic replications are semi-commutative,

• meaning that some operations (writes) are commutative some are not.
• In other words, some schedule of operations would produce the same result although the operations are not always

commutative.

– We believe this has been verified by the fact that many conflicting operations are automatically
resolvable per application specific semantics

• We implemented the dynamic version
vector scheme
– to compare with the hash-history

mechanism
– to see if there is any case that hash-history

mechanism would determine the version
dominance differently

• The version vector and hash history
returns same results.

• We made the merge procedure To
produce unique output
– so that there will be no case when two

different series of deltas produce the same
result.

– Since version vector pessimistically assume
such case, the results was exactly the same
as in the table above.

Correctness Test

Optimistic Replication Previous Approaches: Version Vectors Our Approach: Hash History

