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Effectiveness Analysis

• Version Vectors are widely used in reconciling replicas 
– In weakly consistent replication systems(Bayou and Ficus)
– Not assuming a synchronized timestamp nor centralized update 

serializer
• Doesn’t scale as number of replicas increases

– Version vector needs one entry for each replica
– Size of vector grows in proportion to number of replicas 
– Complexity of management grows as new replicas added or deleted

• Hash History Approach
– Each site keeps a record of the hash of each version
– The sites exchange the list of hashes in reconciling replicas
– The most recent common ancestral version can be found, if no version dominates 

• Useful hints in a subsequent diffing/merging 

• Scalable to thousands of sites
– Hash lists grows in proportion to number of update instances not number of sites
– The number of update instances can be bounded by flushing out obsolete hashes

• Simple to maintain
– No need to track which site made changes 
– Only track what are changes there have been so far

• No need to naming the sites
– Suitable for ad-hoc peer-to-peer networks 
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• We measured the reconcile time that needs to be spent 
– to determine the version dominance and 
– to manage the data structures

• The reconcile time
– for hash history grows linearly as a function of number of revisions 

(writes) and 
– for the version vector as a function of number replica sites.  

• The reconcile time as a function of HH size.  
– Line 1 indicates the constant time table lookup is happened and 
– line 2 indicates the time to accept the hash history when one dominates 

the other.  
– Line 3 shows the time to do conflict merging which involves updating 

both sender and receiver hash history

• Optimistic replication has been widely used in distributed systems 
to achieve increased availability and performance.  

• The definition of “optimistic” 
– allows the replica to be updated in any place 
– and later converges to a consistent state by reconciling with each other the 

updates that each site has accrued independently.  

• The reconciliation process between replicas 
– needs a mechanism to determine the version dominance (i.e. which version 

is newer) or the update-conflict. 

Hash History Pruning
Simulation Result

• Aging with Loosely Synchronized Clocks 
– The classical techniques 

• The global-cutoff timestamp (Lynch et al) and the acknowledgement-timestamp (Golding et al)
• however, this method fundamentally requires to track the committed state per each site, 
• hence it would not scale to thousands of sites.  

– We chose to use the simplistic aging method based on roughly synchronized 
timestamp. 

• Highly Sharable Archived Hash History
– Unlike version vectors, the hash-history for the shared data can be easily shared 

among many sites 
– since it does not contain site-specific information rather it contains the histories of the 

shared object.  
– One can easily convinced that archiving the old history at one of the primary sites 

should be good enough to handle the special case: the version that belongs to the 
obsolete (pruned) hash-history can be mistakenly considered as a new version.   

• Pruning with CSN and OSN
– CSN (a monotonically increasing commit sequence number assigned by the primary 

site) to determine the fact a certain version belongs to the retired section or not.
– A primary site can declare a retired version using OSN (Omitted Sequence Number) 
– Each site can prune its hash history aggressively by recording the OSN (Omitted 

Sequence Number) as the largest CSN of all the retired writes.  
– Later, the OSN is compared with the CSN of the latest version from the other site.  

• If OSN is bigger (newer) than CSN then the latest version from the other site is too old to be 
considered.  

• Version Graph Example Above, 
– where a1, b1, and c1 are operations (or delta). ma2 and mc2 are merge 

operations. 
– Each site originally has V0. 

• Site A initiates reconciliation with site B and site A merges the state (i.e 
version) V1 and V2 by deciding the ordering as b1 and a1.  
– If site B merges V1 and V2 the ordering may be different than that of site A.
– If operations(a1,b1) are commutative, the outcome would be the same.

• Later, site C initiates reconciliation with site A and merges the version 
V4 and V5 by deciding the ordering as b1, a1 and c1.
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• We ran the simulation based 
on the traces that we collected 
from the cvs-logs of some 
active projects on 
sourceforge.net.  

• We use a deterministic merge policy to simulate a deterministic merge behavior 
– so that two different schedules of deltas provide the same output.  
– When two hash histories are merged, 

• we have the merge process to automatically pick the one with higher timestamp as a new version. 
• And we incremented this new version’s hash so that it can be distinguishable from its parents.

• Surprisingly, the result was not completely the same.  
– The hash history based approach was able to detect the equality of versions while the version vector 

reports it as a conflict.  
• Hash history was able to capture the state when two sets of non-commutative operations 

produce the same result independently. 
– We also found that this property helps more to reduce the number of conflicts in overall system, 
– especially when the merge process was able produce the same version regardless of which site 

merged the conflicting writes.  
– It does not necessarily require the operations (writes) are commutative.  

• We believe this is quite interesting 
– since most applications for optimistic replications are semi-commutative, 

• meaning that some operations (writes) are commutative some are not.  
• In other words, some schedule of operations would produce the same result although the operations are not always 

commutative.  

– We believe this has been verified by the fact that many conflicting operations are automatically 
resolvable per application specific semantics 

• We implemented the dynamic version 
vector scheme 
– to compare with the hash-history 

mechanism 
– to see if there is any case that hash-history 

mechanism would determine the version 
dominance differently

• The version vector and hash history 
returns same results.  

• We made the merge procedure To 
produce unique output
– so that there will be no case when two 

different series of deltas produce the same 
result.  

– Since version vector pessimistically assume 
such case, the results was exactly the same 
as in the table above.
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