
Object Location

• Problem: Find a close copy of an object
in a large network

• Solution should:
– Find object if it exists
– Find a close copy of the object (no round

trip to Siberia to find an object next door)
– Balance the load
– Handle changing participant set

Tapestry: Motivation and
Algorithms

Two Simple Solutions

• Solution 1: One central directory
– Must travel far even for nearby objects
– Load not balanced

• Solution 2: Every node has a directory.
– Very expensive to add an object to system
– (but has locality!)

Better Solution: Hierarchy
• Have many levels of

directories
– Check lowest, then second

lowest, and so on until the
highest.

– Many low-level directories, one
highest level

– If object is nearby, it is found
quickly

• Problems
– How to build hierarchy?

Assume info given?
– How to load balance?

Random Hierarchy
• At random

– 1 in 16 nodes level-1 directories.
– 1 in 256 level-2 directories
– …
– Closest level-1 node is your “local”

directory
• Load Balance

– Create 16 types of level-1 directories
– Create 256 types of level-2 directories
– …

Tapestry! [PRR]

• Nodes are directories. Node with ID
1234 is a 1 directory, 12 directory, 123
directory….

• Object 5678 is found in closest 5
directory, closest 56 directory, …

• (Cannot do quite this—tables would be
too large.)

How Does Tapestry Fit?

YesSomeO(log n)O(log2 n)Tapestry

YesMaybeO(log n)O(log2 n)Pastry

YesNoO(log n)O(log2 n)Chord

NoNoO(rn1/r)O(r) CAN

YesNoO(1)> O(n)No directory

NoYesO(1)O(1)Central Directory

BalancedLocalityFindInsertionSystem

Insertion

• Find node with closest matching ID
(surrogate) and get preliminary neighbor
table

• Find all nodes that need to route to new
node via multicast

• Optimize neighbor table

Acknowledged Multicast
Algorithm

Locates & Contacts all nodes with a given prefix
• Create a tree based on IDs as we go
• Starting node knows when all nodes reached
• Nodes send acks when all children reached

5434554340

543??

5434?

The node then sends to any
?0345, any ?1345, any
?3345, etc. if possible

5431?
?4345 sends to
04345, 54345… if
they exist

Optimize Neighbor Table
• Idea:

– Given level-i list,
find all level-(i-1)
pointing to level-i
list.

– Trim list
– Repeat

• Level-(i-1) node in
little circle must
must point to a
level-I node in the
big circle

Simultaneous Insertions
• Two nodes conflict if there no is ordering the

network can agree on.
– A arrives before B one place, but after B some

other place
• Modify multicast algorithm so two conflicting

nodes find each other.
– Send down hole being filled (same hole)
– Send down “watch list” of prefixes (diff hole)

• Nodes getting multicast
– If node on watchlist found, forward information
– If hole already filled, send to all such nodes

Locking Pointers
• Multicast assumes that chosen node can

forward message.
• Inserting nodes have incomplete information.
So…
• Pointers are added as “locked”. When

multicast for that node returns, pointers are
unlocked.

• Multicasts are sent to one unlocked pointer and
all locked pointers.

• Locked pointers may not be deleted.

	Object Location
	Tapestry: Motivation and Algorithms
	Two Simple Solutions
	Better Solution: Hierarchy
	Random Hierarchy
	Tapestry! [PRR]
	How Does Tapestry Fit?
	Insertion
	Optimize Neighbor Table
	Simultaneous Insertions
	Locking Pointers

