
Towards Building the OceanStore Web Cache

Patrick R. Eaton
University of California, Berkeley

eaton@cs.berkeley.edu

June 10, 2002



Motivation

• Traditional hierarchical web caching architectures require much maintenance
and human configuration.

• We have developed a web cache architecture which exploits the features of
OceanStore to be self-configuring/managing/maintaining.

– uses Tapestry to allow cache nodes to enter and leave the network without
impacting other caches

– uses Tapestry to locate objects in the network without explicit knowledge of
other caches

– uses excess resources in the network to cache more content

• What is the cost in performance of this new architecture?

1



Components of the OceanStore Web Caching Architecture

• Client proxy.

– translates a user’s web requests to check the OceanStore web cache

– runs on same machine as user’s web browser

• HTTP to OceanStore gateway.

– convert web content into OceanStore documents

– hosted by regional cache provider

• Cache managers.

– work greedily to provide best level of service to clients in the local area

– run locally by department or organization

2



The OceanStore Web Cache Architecture

O

HTTP −> OS Gateway

Client Proxy

O
Browser

Cache
Manager

Write to OS

HTTP Result

HTTP Request

HTTP Request

HTTP Result

HTTP Request

HTTP Result
OSRead

OSReadResult
Commands

Migration
Replica

OS Cache
Request

OS Cache
Hint

3



Scalability and Maintainability

• Tapestry allows nodes to enter and leave the network without notice.

• Tapestry allows us to locate service providers.

• No hierarchy or group configuration/maintenance.

• Efficient use of excess resources in the network.

• No network “hot-spots”.

• Greater aggregate read bandwidth.

4



Cache Latency

• Measure the latency of a single request.

• Cache miss.

– document is not cached on any node
– retrieve document from origin server after lookup fails

• Local hit.

– document is cached locally
– can return document immediately

• Remote hit.

– document is not cached locally but is cached on some node
– must find node with content cached and retrieve document

• Key difference between caches.

– OceanStore searches other caches through a series of serial Tapestry hops
– ICP searches other caches through a parallel multicast

5



Cache Latency: Cache Miss

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of ICP Cache

Cache Miss

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of OceanStore Web Cache

Cache Miss

• ICP cache waits to receive all nacks before requesting the document from the
origin server.

• OceanStore cache requests document from origin server when Tapestry re-
solves that the document is not published in the network.

6



Cache Latency: Local Hit

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of ICP Cache

Cache Miss

Local Hit

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of OceanStore Web Cache

Cache Miss

Local Hit

• Both caches respond very quickly when document is cached locally.

• OceanStore cache actually serves close content twice as fast as the ICP cache
(20 ms versus 35 ms).

– OceanStore cache can move content to the requesting client

– ICP cache can only move content to the proxy of the requesting client

7



Cache Latency: Remote Hit - The Bad News

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of ICP Cache

Cache Miss
Remote Hit
Local Hit

Request
0

500

1000

1500

T
im

e 
(m

s)

Latency of OceanStore Web Cache

Cache Miss
Remote Hit
Local Hit

• Can observe the effect of Tapestry’s hop-by-hop routing.

– highlights the importance of managing replicas to ensure content is close
to consumers

• OceanStore cache can actually serve content faster when it is nearby.

8



Inspiration for Replica Placement Strategy

In Tapestry, object location paths
combine at Tapestry nodes. Lo-
cation requests are routed from
the edges of the network toward
the object’s Tapestry root.

9



Replica Placement Strategy

• Idea: Place replicas at the “conflu-
ence” of location paths.

• All clients “upstream” of the replica
will benefit from it.

10



Conclusions and Ongoing Work

• The performance of individual components is adequate.

• The key to good aggregate performance is effective replica management.

• Ongoing work:

– Implement replica management in the cache managers.

– Explore use of Tapestry “time-outs” to reduce the cost of remote hits.

– Measure the effect of using idle resources in the network.

– Find appropriate workloads/load generators for measuring the system.

11


