
Undo for Recovery:
Approaches and Models

Aaron Brown
UC Berkeley ROC Group



2

Motivation
• Human operator error is a major cause of 
system failures
– systems are not tolerant of human error during 

system administration
• Undo effectively tolerates human error

– recovery-based: repairs unanticipated mistakes
– familiar model: ubiquitous in productivity applications

• Undo has “fringe benefits”
– makes sysadmin’s job easier, improving maintainability
– enables trial-and-error learning
– helps shift recovery burden from sysadmin to users
– helps recover from more than just human error

» SW/HW failure, security breaches, virus infections, ...



3

An Undo paradigm
• ROC Undo combines time travel with repair

• The Three R’s of Undo
– Rewind: roll system state backwards in time
– Repair: fix latent or active errors

» automatically or via human intervention
– Replay: roll system state forward, replaying user 

interactions lost during rewind
» we assume a service model with well-defined user actions

• All three steps are critical
– rewind enables undo
– repair lets user/administrator fix problems
– replay preserves updates, propagates fixes forward



4

Undo examples: email
• Coarse-grained Undo

– roll back OS or app. upgrade without losing user data
– revert system-wide configuration changes
– “go back in time” to retroactively install virus filter on 

email server; effects of virus are squashed on redo

• Fine-grained Undo
– undo deletion of a user, mailbox, or email message
– reverse changes to a user’s profile or filtering rules
– maybe even unsend mail (?)

• Undo paradigm must support both granularities



5

Challenges in 3R paradigm
• Handling externalized events

– externalized event: event visible outside of system
» example: user downloads/reads email message
» example: user forwards email message over the Internet

– undo can invalidate externalized events
» repair can cause events to change/disappear on replay
» result: inconsistency between system and external env’t

– solutions depend on acceptable level of inconsistency
» human users willing to accept inconsistency in some apps
» issue compensating or explanatory events
» delay execution of externalized events for an undo window
» convert external to internal by expanding system boundary



6

Challenges in 3R paradigm (2)
• Integrated coarse- and fine-grained undo

– coarse-grained undo best handled by physical logging
– fine-grained undo best handled by logical logging
– best: hybrid system with physical logging for Rewind 

and logical logging for Replay
» caveat: limits full 3R semantics to logically-logged system 

state; allows simple undo/redo of unmonitored state
• i.e., redo of unmonitored state won’t propagate repairs

• Managing state dependencies
– Rewind/Repair cycle can invalidate logged events
– Replay system must understand dependencies 

between logged state and state touched during repair



7

Towards system models for undo
• Goal: abstract model for undo-capable system

– template for constructing undoable services
– needed to analyze generality and limitations of undo

• Model components
– state entities
– state update events (analogue of transactions)
– event queues and logs
– untracked system changes

• Assumptions
– storage layer that supports bidirectional time-travel

» via non-overwriting FS, snapshots, etc.
• Email as example application



8

Simple model
• Entire system is one state entity

– Analysis
+ simple, easy to implement, easier to trust, most general
– huge overhead for fine-grained undo operations
– serialization bottleneck at single queue/log
– difficult to distinguish different users’ events

Email Service State
- user state
- mailboxes
- application
- operating system

Time-travel storage

synch.

untracked
changes

User updates
(IMAP)

Email delivery
(SMTP)



9

Hierarchical model
• System composed of multiple state entities

– each state entity supports undo as in simple model
– state entities join hierarchically to give multiple 

granularities of undo

– Analysis
+ multiple undo granularities reduces overhead, bottlenecks
+ distributed undo possible
– greater complexity; tricky to coordinate different layers

User 1
state TT

store

User 2
state TT

store

u
s
e
r

m
u
x

virus
filter

Email Service State

Time-
travel
store

untracked
changes

User updates
(IMAP)

Email delivery
(SMTP)



10

Status
• Refining system model for undo

– hierarchical seems best bet, but many issues to solve
– feedback welcome!

• Learning about real-world email systems
– to help calibrate the undo model
– working with Sun/iPlanet Messaging Server team

» likely will get source code access

• Continuing maintainability benchmarking work
– helps illustrate what kinds of things need undo

• Preparing for proof-of-concept implementation
– in the context of iPlanet Messaging Server


	Undo for Recovery:Approaches and Models
	Motivation
	An Undo paradigm
	Undo examples: email
	Challenges in 3R paradigm
	Challenges in 3R paradigm (2)
	Towards system models for undo
	Simple model
	Hierarchical model
	Status

