Applying Recursive Restartability to Real Systems

George Candea, James Cutler, Armando Fox & Mercury dev team

Stanford University

Motivation to Reboot . Reactive restarts: quickly and effectively recover from trouble Deadlock detection in DBMS's NASA Mars Pathfinder How to write production code after 1 week on the job Prophylactic restarts: run once for 365 days vs. 365 times for one day Rolling reboots of search engine cluster nodes Patriot missile defense system IBM xSeries servers What's good about rebooting? · Returns system (mostly) to well-tested, well-understood start state High confidence way to reclaim stale/leaked resources · Easy to understand and use What's bad about rebooting? Most systems not designed to tolerate unannounced restarts Consequence: long downtimes, potential data loss

ROC Retrea

Recursive Restartability Core Message Structuring along MTTF/MTTR boundaries enables In ROC systems, must be characterized by the improvement of system availability w/out <u>Automation</u>, to cut humans out of the loop as much as possible (requires *effectiveness* to justify its existence) rewriting code or "rewiring" the infrastructure. <u>Ouickness</u>, to reduce MTTR and hence improve availability (requires *minimality* of impact on uptime) Restart tree = hierarchy that captures restart dependencies of system (not functional deps, not decision tree) Integrity, to not make things worse (requires simplicity to build confidence in mechanism) Sol: Make systems finely restartable and apply smart restarts Restart group (analogous to UNIX): nodes in a subtree get restarted together Definition: A software system is RR if it gracefully tolerate successive restarts at multiple levels Strong fault isolation between groups, unequivocal restarting from root (3 trivial + 2 non-trivial r-groups in fig) Key to short/zero MTTRs = partial restarts (both reactive and prophylactic) Going up increases MTTR as well as restart confidence \rightarrow tree hiking policy How to build RR systems? Some ideas, still researching. January 17, 2002 ROC Retrea January 17, 2002 ROC Retreat

aary 17, 2003

Recovery Oriented Computing Retreat

Node Promotion			
Oracle mistakes: guess-too-low and	Faulty or	acle (20% 1	mistakes)
guess-too-high	Component	MTTRiv	MTTRv
	ise	6.1	6.1
 Most problematic: widely different MTTRs (fedr: 2 sec, pbcom: 19 sec) 	ilstr	6.1	6.1
	istu	5.8	5.8
	fedr	9.8	<mark>9.8</mark>
Push high-MTTR up, low-MTTR down	pbcom	26.7	23.9
	msgbone	4.7	4.7
Side effect: free fedr rejuvenation			
Assumptions:		~	
Concurrent restarts	۱ فر فر ک		Í
No longer assumed:	é 🖻		é
 Oracle is perfect 	55		പ ്

•	Independently	restartable	components
Janu	urv 17, 2002		ROC Retreat

essons and Discussion MTTF/MTTR-based boundary (re)definition instead of

- "traditional" ways (e.g., fedrcom 🗲 fedr + pbcom)
- Transform restart tree post deployment (addresses most "expensive" time to fail in product's life -- the later you discover a bug, the more expensive it is)
- Not all downtime is the same (e.g., satellite pass)... would you rather have high MTTF or low MTTR?
- Need knowledge of distribution to use MTTF/MTTR in making predictions (typically low coeff of variation assumed)

10

Restart group boundaries should not intersect existing failure isolation boundaries lanuary 17, 2002 ROC R

