George Candea

Applying Recur sive Restartability

Applying Recursive Restartability
to Real Systems

George Candea, James Cutler, Armando Fox
& Mercury dev team

Stanford University

Motivation to Reboot

m Reactive restarts: quickly and effectively recover from trouble
e Deadlock detection in DBMS's
o NASA Mars Pathfinder
e How to write production code after 1 week on the job

m Prophylactic restarts: run once for 365 days vs. 365 times for one day
o Rolling reboots of search engine cluster nodes
e Patriot missile defense system
® IBM xSeries servers

® What's good about rebooting?
e Returns system (mostly) to well-tested, well-understood start state
e High confidence way to reclaim stale/leaked resources
e Easy to understand and use

m What's bad about rebooting?

® Most systems not designed to tolerate unannounced restarts
e Consequence: long downtimes, potential data loss

January 17, 2002 ROC Retreat 2

Recursive Restartability

= In ROC systems, must be characterized by

e Automation, to cut humans out of the loop as much as possible
(requires effectiveness to justify its existence)

e Quickness, to reduce MTTR and hence improve availability
(requires minimality of impact on uptime)

e Integrity, to not make things worse
(requires simplicity to build confidence in mechanism)

= Sol: Make systems finely restartable and apply smart restarts

= Definition: A software system is RR if it gracefully tolerate
successive restarts at multiple levels

m Key to short/zero MTTRs = partial restarts (both reactive and
prophylactic)

= How to build RR systems? Some ideas, still researching.

Core Message

Structuring along MTTF/MTTR boundaries enables
the improvement of system availability w/out
rewriting code or “rewiring” the infrastructure.

m Restart tree = hierarchy that captures
restart dependencies of system
(not functional deps, not decision tree)

m Restart group (analogous to UNIX):
nodes in a subtree get restarted together

= Strong fault isolation between groups,
unequivocal restarting from root
(3 trivial + 2 non-trivial r-groups in fig)

= Going up increases MTTR as well as
restart confidence = tree hiking policy

DBMS
httpd e
enary 17, 2002 ROC Rereat 3 Jenuary 17, 2002 ROC Retreat 4
= COTShased satellite ground station: Linux+Windows PCs, Java software
components, COTS radio modems, e Component { MTTRi { MTTRu
= Failure detection + recovery: ok '_i" m One restart group - any 153 29 95
 Beacons + health summaries -> FD detects component failures and reports them to failure leads to total system s 29 95
RST fthorough failure detection was not a goal o o o =
o RST: oracle tells restarter whom to restart 2
© FD &> RST: mutual monitoring and restarting r&_-zstar_t (aCtual initial fedrcom 29 28
= Perfect oracle recommends minimal-cost cure policy S|tuat|on) msgoone z d
= Goal of RR-ification: automate recovery o

= Assumptions:
* Al failures are detectable by FD
o Any component failure will result in temporary unavailability of entire system

GUI Control Programs %

\ [\

)

Transcaiver| [Antenna Prdict

Jenuary 17, 2002 ROC Retreat s

m Total - partial restart
(Rise=2 sec, Riedrcom=20 sec)

m Assumptions:

e Components can restart concurrently
e Oracle is perfect

January 17, 2002 ROC Retreat

Recovery Oriented Computing Retr eat

George Candea Applying Recur sive Restartability

Subtree Depth Augmentation Consolidation
m Cascading failures inise and istr
. . . Component}{ MTTRu { MTTRiv
= f edr CO!’T] hlgh MTTR / lOW MTTF Component { MTTRi { MTTRui due to SynChronlzatlon ise 28.9 9.5
due to disparate ratio = 95 95 . istr 289 | 95
= s 5 m Useless overhead every time - o =5
m Split component along MTTR/MTTF = e resulting from doomed restart e 2L
boundaries (we rewired) poeom | 228 | 219 m Encode knowledge in restart tree Lmsore 1 mo | o7
. msgbone 47 47
= Better MTTR because of fine m Dual of depth augmentation
granularity .
) = Assumptions:
u ASSUmpthnS: e Concurrent restarts
e Concurrent restarts e Oracle is perfect
e Oracle is perfect
o Restarting does not induce failures = No longer assumed: o
elsewhere e hoom e Independently restartable components e s
January 17, 2002 ROC Retreat fedr pbcom 7 January 17, 2002 ROC Retreat 8
Node Promotion Lessons and Discussion
= Oracle mistakes: guess-too-low and _ Fauy orade @0 misakey = MTTF/MTTR-based boundary (re)definition instead of
guess-too-high Component | MTTRw § MTTRy “traditional” ways (e.g., f edrcom-> f edr + pbcom)
ise 6.1 6.1
. M$¥Rpsrc(’;3|eec'j":?técgé’:’:'deg'cg':te&e;;ec) o s m Transform restart tree post deployment (addresses most
: P fedr 9.8 98 “expensive” time to fail in product’s life -- the later you
obcom 26.7 23.9 H H it
m Push high-MTTR up, low-MTTR down [T T 5 discover a bug, the more expensive it is)
= Side effect: free f edr rejuvenation = Not all downtime is the same (e.g., satellite pass)... would

) you rather have high MTTF or low MTTR ?
m Assumptions:

e Concurrent restarts = Need knowledge of distribution to use MTTF/MTTR in

making predictions (typically low coeff of variation assumed)
= No longer assumed:

e Oracle is perfect o m Restart group boundaries should not intersect existing

o Independently restartable components T oo fedr failure isolation boundaries

sy 17, 202 Roc Rares . sy 17 202 - w0
Ongoing Work More...

m Collect more precise numbers

Apply RR to Interactive Workspaces Room

http://RR. stanford. edu

Improve fault detection and logging in ground station

m Design a “RR object” to be inherited by all sw
components in system (e.g., a RR EJB in a J2EE-
compliant application server)

Jenuary 17, 2002 ROC Retreat 1 January 17, 2002 ROC Retreat 2

Recovery Oriented Computing Retr eat

