
Surfing the Web through OceanStore

Patrick R. Eaton
University of California, Berkeley

eaton@cs.berkeley.edu

January 16, 2002



Motivation

• We believe that it is important to study how OceanStore interacts with real
applications.

• OceanStore must support legacy interfaces.

– see the rise of web browsers and HTTP

• Legacy interfaces can be enhanced by OceanStore features.

– archival storage

– time travel

– promiscuous caching

– tolerance to machine failure

1



Goal

• Develop an OceanStore web caching architecture.

• The architecture should

– support legacy HTTP interface and web clients

– provide a migration path to an OceanStore-native web

– use OceanStore features to enhance the web experience

2



Components of the OceanStore Web Caching Architecture

• Client proxy.

– provide a user’s web browser with a connection to cached content

• Passive caching agent.

– retrieve “hot” documents and cache them in OceanStore

• Active caching agent.

– cache content pro-actively directly from content provider on all updates

• Spidering caching agent.

– crawl the web in search of documents to add to the cache

• Reverse proxy.

– allow “ancient” web clients to access data in the native OceanStore web

3



Client Proxy

• Serve as translator to convert HTTP
messages into OceanStore mes-
sages.

• Check the OceanStore web cache for
requested documents.

• Retrieve uncached documents via
the legacy protocol.

• Provide the passive caching agent
with hints on popular documents.

O
Client Proxy

O
Browser

OSRead

HTTP Request

HTTP Result

OSReadResult

Hint
OS Cache

HTTP Request

HTTP Result

4



Passive Caching Agent

• Use hints from client proxies to deter-
mine popular content.

• Retrieve popular content using stan-
dard HTTP protocols.

• Store the content in the OceanStore
cache.

Passive Cache

Hint
OS Cache

HTTP Result

HTTP Request

Write to OS

5



Spidering Caching Agent

• Obvious extension to the passive
caching agent.

• Crawl the web searching for content
that can be added to the cache.

Spidering Cache

HTTP Result

HTTP Request

Write to OS

6



Active Caching Agent

• Used by content providers who want
to ensure that their content is cached
in OceanStore and available to their
users.

• Providers proactively push content
updates to the agent.

• Agent stores content in OceanStore
web cache.

• Service could be based on contrac-
tual agreement.

– content can be signed to prevent
spoofing

– contract could specify minimum
number and location of replicas

Active Cache

Content
Provider

Content
Write to OS

7



Reverse Proxy

• Allow traditional web clients to ac-
cess documents that are published
natively to OceanStore.

• Sit at the IP address published for a
server.

• Translate incoming HTTP request to
OceanStore requests.

• Convert the OceanStore content to
an HTTP response to serve to the
user.

OOBrowser

HTTP Request

HTTP ResultReverse
Proxy

OSReadResult

OSRead

8



The Whole Web Cache Architecture

OO

Passive Cache Spidering Cache

O
BrowserClient Proxy

HTTP Request

HTTP Result

O
Browser

Active Cache

Reverse
Proxy

Hint
OS Cache

HTTP Result

HTTP Request

HTTP Result

HTTP Request
Write to OS

OSReadResult

OSRead

HTTP Request

HTTP Result

OSReadResult

Content
Provider

Content
Write to OS

OSRead

Write to OS

HTTP Request

HTTP Result

9



Success Metrics

• Improved browsing experience.

– lower latency for end user

• Reduce server load.

– reduce load on the web servers of content providers

• Technical metrics.

– amount of cache sharing

– effectiveness of caching content close to users

10



Issues - Document Freshness

• OceanStore stores all versions of a document that has ever been cached.

• Issue: How do we request a version that is still fresh enough (by HTTP cache
requirements) without extra round-trips or reading unnecessary data.

• Solution: Include version predicates in read requests.

– this parallels the predicates sent with updates

11



Issues - Negative Tapestry Results

• When Tapestry delivers a result, it can be checked because all data is verifi-
able.

• Issue: What does a negative result mean?

– document does not exist

• Answer: Negative results are only hints.

• Issue: Are non-verifiable hints useful?

• Answer: Yes, negative hints simplify the application programming task and
are vital for application performance.

12



Status

• Client proxy and passive caching agent prototypes are functioning.

• Client proxy

– accepts HTTP requests from user’s browser

– searches the OceanStore cache for a fresh copy of the document

– converts the OceanStore result into a HTTP response

– retrieves uncached documents from the origin server using HTTP

– delivers HTTP response to user’s browser

• Passive caching agent

– accepts hints from client proxies

– retrieves documents from origin servers using HTTP

– creates OceanStore objects for content being cached for first time

– updates the cache with the current content of the document

13



Status (continued)

• What is missing?

– strict adherence to HTTP caching directives

– Tapestry timeouts and negative hints

– multiple client tests

14



Preliminary Results

• I present these numbers only emphasize that we have a working system. The
system is not yet widely deployed or tuned for performance.

Time to Retrieve a Document
1K 4K 16K

Department Web Server 160 ms 982 ms 751 ms
OceanStore Web Cache (remote reads) 286 ms 647 ms 438 ms
OceanStore Web Cache (local reads) 4.3 ms 7 ms 7 ms

15



Future Work

• Implement all of HTTP’s caching policies.

• Perform larger scale usability tests using others in the department.

• Use an active caching agent to push content from the department’s web server
into the OceanStore cache.

• Crazy Idea: Initial results indicate sub-10 ms cache hit times for content on
the local node. Could the OceanStore web cache replace the local browser
cache?

16



Conclusions

• We have presented an architecture for the OceanStore web cache.

• A prototype implementation of the OceanStore web cache has been devel-
oped.

• It is productive to examine the interaction of applications with OceanStore
during the design of the system.

17



Issues - Key Management

• Every principal who stores data must have an identifying key. Any client that
has a key to decode data can read an object.

• Issue: How are the keys organized in the web caching architecture?

• A passive caching agent needs a key to cache the content.

– passive caching agent is billed for storing content

– difficult to bill users

– perhaps it is OK to avoid billing users since this matches the HTTP/web
paradigm

• An active caching agent needs a key to cache the content.

– active caching agent is billed for storing content

– active cache can bill content providers who wish to push their content out
- similar to paying for bandwidth

18



Pushing Content

• Scenario: A Super Bowl web cast of
the plays and stats (not video) for
each play. Content is updated every
25 seconds and needs to be pushed
to several million viewers.

• Caching content in OceanStore has
several advantages.

• Key feature is a number of mobile
replicas arranged in a tree for rapid
dissemination.

O

O
O

Replica

Replica

Replica

Replica

Replica

O

O
O

Provider
Content

Active Cache
Content

Write to OS

19



Pushing Content (continued)

• Advantages of caching fast-changing content in OceanStore:

– no client starvation

– replicas are created and moved to service hot spots

– no load on server

– rapid dissemination of updates via optimized dissemination tree

– cache communication is implicit in the dissemination tree

– no over-provisioning required (Victoria’s Secret fashion show)

20


