
1

1 Introduction
The need for a dependable computing infrastructure has
never been more urgent. The world is shifting to a
model where data is stored and maintained in central-
ized servers and doled out to clients via network ser-
vices; we have seen the beginnings of this trend over the
last few years with the growth of Internet-based ser-
vices, portals, and e-commerce. As the trend accelerates
further with the deployment of technologies such as per-
vasive wireless networking, mobile devices, .NET, and
J2EE, the social and financial impact of dependability
problems in the infrastructure promises to be enormous. 

One of the primary impediments to infrastructure
dependability today is the human operator (a.k.a. system
administrator). Human operator error is the leading
cause of outages across a spectrum of systems ranging
from Internet services to the US telephone network [2]
[4] [7]. When operators don’t create outages, they often
compound them by not responding quickly enough to
fix the problems before damage is done. 

What are we to do? One option is to eliminate the
human operator from the system. This may work for
small embedded devices, but it doesn’t apply to the
large systems with hard state that make up the network
service infrastructure of the future. Furthermore, studies
from psychology and system accident theory leave little
room for debate: attempts to automate away human
operators in large systems invariably fail due the auto-
mation irony1 [8].

The only viable alternative, then, is to build infra-
structure systems that accept and compensate for the
inevitable weaknesses of their human operators. Future
systems should recover easily from operator mistakes,
give the operator an environment in which trial-and-
error reasoning is possible, and harness the unique
human capacity for hindsight by allowing retroactive
repairs once problems have been manifested. There is a

recovery mechanism that has these properties, and it is
one that we use every day in our word processors and
spreadsheets: undo. Unfortunately, undo as a recovery
model has been limited to the application level, where it
is insufficient to tackle the operational problems that
plague infrastructure systems: operator errors made dur-
ing upgrades and reconfiguration, external virus and
hacker attacks, and unanticipated problems detected too
late for their effects to be contained.

To address these problems, we introduce system-
level undo, an undo-based recovery model that covers
all levels of the system, not just the application. The
crux of our undo model is that it disambiguates user
intentions from their manifestations in system state,
allowing the undo mechanism to repair problems in sys-
tem state without losing user data. 

Although the technological underpinnings of our
undo mechanism are simple—a combination of non-
overwriting storage and logging of user inputs—the pol-
icy choices in an undo implementation are complex.
Most challenging is dealing with the problem of exter-
nalized state, where erroneous changes to system state
that have been made visible to the end-user need to be
revoked as part of the undo process. Another challenge
lies in deciding what state should be made recoverable
through undo: a good undo mechanism will preserve
user data while allowing arbitrary repairs to system
state, and drawing the dividing line between recoverable
and non-recoverable changes is non-trivial. A final chal-

1 The automation irony captures two problems with auto-
mation. First, automation shifts the burden of correctness from
the operator to the designer, requiring that the designer antici-
pate and correctly address all possible failure scenarios. Sec-
ond, as the designer is rarely perfect, automated systems
almost always can reach exceptional states that require human
intervention. These exceptional states correspond to the most
challenging, obscure problems; psychological studies rou-
tinely show that humans are most prone to mistakes on these
types of problems, especially when automation has eliminated
normal day-to-day interaction with the system.

Rewind, Repair, Replay: Three R’s to Dependability
Aaron B. Brown and David A. Patterson

University of California at Berkeley, EECS Computer Science Division
387 Soda Hall #1776, Berkeley, CA, 94720-1776, USA

Contact author: Aaron Brown, abrown@cs.berkeley.edu

Abstract
Motivated by the growth of web and infrastructure services and their susceptibility to human oper-
ator-related failures, we introduce system-level undo as a recovery mechanism designed to
improve service dependability. Undo enables system operators to recover from their inevitable mis-
takes and furthermore enables retroactive repair of problems that were not fixed quickly enough to
prevent detrimental effects. We present the “three R’s”, a model for undo that matches the needs of
human error recovery and retroactive repair; discuss several of the issues raised by this undo
model; and describe a prototype implementation of system-level undo in an email service system.



2

lenge is in constructing an undo system that works at
multiple granularities: cluster-wide, per-system, and
per-user. 

2 The Three R’s: an Undo Model 
Akin to Time Travel
To support retroactive repair and recovery from operator
error, we propose an undo model based on a 3-step pro-
cess that we call “the three R’s”: Rewind, Repair, and
Replay. In the rewind step, all system state (including
user data as well as OS and application hard state) is
reverted to its contents at an earlier time (before the
error occurred). In the repair step, the operator is
allowed to make any changes to the system he or she
wants. Changes could include fixing a latent error,
installing a preventative filter or patch, retrying an oper-
ation that was unsuccessful the first time around (like a
software upgrade of the application or OS), or even sim-
ply omitting an action that caused problems (like an
accidental “rm -rf *”). Finally, in the replay step, the
undo system re-executes all end-user interactions with
the system, allowing them to be reprocessed with the
changes made during the repair step. 

A convenient metaphor for understanding the 3R
undo model is to think of it as time travel. In a common
portrayal of time travel in science-fiction, a protagonist
travels back through time to right a wrong. By making
changes to the timeline in a past time frame, the protag-
onist fixes problems and averts disaster, and the effects
of those changes are instantaneously propagated for-
ward to the present. The 3R undo model offers a similar
sequence of events. The rewind step is the equivalent of
traveling back in time, in this case to the point in time
before an error occurred. The repair step is equivalent to
changing the timeline: the course of events is altered
such that the error is repaired or avoided. Finally, the
replay step propagates the effects of the repair forward
to the present by reexecuting—in the context of the
repaired system—all events in the timeline between the
repairs and the present. Since the events are replayed in
the context of the repaired system, they reflect the
effects of the repairs and any incorrect behavior result-
ing from the original error is cancelled out. 

All three steps in the 3R model are required to
achieve effective retroactive repair and recovery from
operator error. Without rewind, recovery would not be
possible since the state changes induced by the error
could not be revoked. Without repair, the error itself
could not be corrected. Without replay, all user interac-
tions and updates between the rewind point and the
present would be lost.

There are several existing systems and techniques
that offer subsets of the 3R model, but none offers full

3R semantics at the system level. For example,
backup/restore or checkpointing schemes [1] [3] [5]
offer rewind/repair or rewind/replay, but deny the ability
to roll forward once changes have been made. Recovery
systems for transactional relational databases use
rewind/replay to recover from crashes, deadlocks, and
other fatal events, but again do not offer the ability to
interject repair into the recovery cycle [6]. Databases are
still an interesting example because they have the mech-
anisms needed for 3R undo: checkpoints and redo logs.
However, these mechanism are not automatically com-
bined in such a way as to make 3R undo possible. Even
if they were, they do not operate at the system level, dis-
allowing the ability to recover from unsuccessful soft-
ware upgrades or operator changes to the OS
configuration. As will be discussed in more detail in
Section 4, we can implement an automatic system-level
undo by using similar mechanisms—logging of user
interactions and checkpointable/non-overwriting stor-
age—but at a lower level of the system.

3 Challenges in the 3R Undo Model
3.1 Delineating state preserved by replay
When an undo is carried out under the 3R undo model,
all state changes made since the undo point are wiped
out during the rewind step. It is the responsibility of the
replay step to restore all state changes that are important
to the end user. Defining exactly what state this encom-
passes is tricky, especially when repairs could radically
change the physical representation of state (e.g., an
upgrade of a mail server that rewrites the on-disk mail-
box format). Ideally, the replay mechanism should pre-
serve end-user intent rather than specific state changes.
For example, in an undoable e-mail system, a user’s act
of deleting a message should be recorded as “delete
message with Message-ID x”, not “alter byte range m –
n in file z”. By tracking user updates at an intentional
level, the replay system has the best hope of preserving
the state that the user cares about while leaving as much
flexibility for repair as possible.

In the network service environment that we are tar-
geting, users interact with the system through standard-
ized application protocols, so the easiest way to achieve
intentional tracking of user updates is to intercept and
track user interactions at the protocol level. Most net-
work service protocols are stable, well-defined, and
divorced from any particular internal state representa-
tion: SMTP and IMAP for email, JDBC/SQL for data-
bases, and XML/SOAP for the emerging online
application frameworks, for example. Tracking interac-
tions at the level of these protocols automatically pro-
vides an record of user intent that is independent of the
details of the application itself; in fact, it should be pos-



3

sible to completely swap out one server implementation
for another during the repair phase and still be able to
replay user interactions, as the protocol itself is unlikely
to change across implementations. Of course, in those
cases where no standard protocol is used or where the
protocol is quickly-evolving, user interactions must be
tracked at a higher level. Finally, note that protocol-level
tracking argues for a implementation of 3R undo as a
proxy layer wrapping an existing service application;
this is in fact how we are building our undoable email
system prototype, described further in Section 4.

Up to now we have defined replay as only affecting
user state, but have ignored the issue of whether repairs
are tracked. As with user updates, to track and replay
repairs the undo system would have to log the intent of
the repairs, not their effects on state. While this is feasi-
ble for protocol-limited user interactions, it becomes a
nightmare when the set of possible changes is limited
only by the operator’s human ingenuity, not a list of pro-
tocol commands. Thus for feasibility reasons we make
the choice to not allow replay of repairs in our undo
model; we may explore the possibility in future work.

3.2 Externalized state
A favorite device of time-travel fiction is the time-para-
dox, where alterations to the past timeline effect unex-
pected changes in the present. In these paradoxes, the
time-traveling protagonist, whose memories are typi-
cally isolated from the altered timeline, sees the “new”
present as inconsistent. 

The same problem plagues system-level undo: dur-
ing the undo cycle, repairs change the past state of the
system, and replay propagates those changes forward to
produce a new version of the present that is likely incon-
sistent with the view of the present seen before the undo
cycle. For example, in an email system, a retroactive
repair could consist of installing a spam- or virus-block-
ing filter. When replayed forward, formerly-delivered
mail messages might be squashed by the new filter. A
user who had read, forwarded, or replied to those mes-
sages would see the system as inconsistent with his or
her expectations once the undo cycle was complete. We
call this problem of inconsistencies the “externalized
state” problem because inconsistencies arise only when
state that has formerly been made visible to an external
entity (i.e., the user) is altered by the undo cycle; state
that has not been externalized cannot cause inconsisten-
cies.

As with the similar output commit problem dis-
cussed in the checkpointing literature [3], there is no
complete fix for the externalized state problem; possible
solutions involve managing the inconsistency rather
than eliminating it. The easiest solution is to simply
ignore the inconsistency, assuming that the user will tol-

erate it. This approach is best suited for minor inconsis-
tencies in applications with relaxed semantics, for
example when the inconsistency causes reordering of
message delivery in an email system or changes item
availability estimates in an e-commerce system. When
the inconsistency is too large to ignore, the best solution
is to use compensating or explanatory actions to help the
user adjust to it. For example, in our email scenario
above, we could replace the removed message in the
user’s mailbox with a new message explaining why the
original message was removed; this technique is used
effectively today by virus-scanning email gateways. 

When the entity that externalizes state is not an end-
user but another computer system, there are more pow-
erful solutions available. One, which removes inconsis-
tencies entirely, is to expand the boundary of the undo
system to encompass the external system. This can be
done by propagating undo requests across system
boundaries so that when externalized state is changed
the external system is rolled back and replayed with the
new version of the externalized state. This approach
must be used with care, as the boundary may have to be
drawn arbitrarily large to completely tolerate the incon-
sistency; however, a small increase in boundary size
may reduce the inconsistency to the point where it can
be tolerated by a human user. Another approach when
the externalizer is a computer is to delay the execution
of externalizing actions for a given time period; during
this undo window, the actions can be rolled back and
altered without inconsistency. This approach is limited
to cases where the actions are asynchronous and not
time-critical, like delivering email to an external system.

Note that any of the solutions that we have dis-
cussed for the externalized state problem require that the
undo system be aware of any undo-induced inconsisten-
cies and their magnitude. This can be a significant
implementation challenge; we will discuss our approach
in Section 4.

3.3 Granularity of undo
To be most useful, undo as a recovery mechanism
should be available at multiple granularities. A user
might want to use undo to recover from a mistake affect-
ing only his or her state; it should not be necessary to
rewind/replay the entire system in order for this to hap-
pen. Conversely, the system operator must still be able
to apply undo across all system state in order to recover
from system-wide failure or to carry out low-level
repairs that affect all users. An extension of this problem
occurs in a clustered system, where it would be useful
from an efficiency standpoint to support undo on the
per-node level as well as the cross-cluster level. 

Exposing undo at multiple granularities raises some
challenges, most significantly in managing and coordi-



4

nating the timelines of state at different levels of the sys-
tem. For example, if a user in an email system has
rewound his or her own mailbox, and the system opera-
tor then wants to rewind the entire system, a policy is
needed to determine which rewind request takes prece-
dence, and coordination is necessary to ensure that all
state ends up at the correct point in time upon replay. 

A further challenge arises when implementation is
considered: to support fine-grained undo at the per-user
level, system state must be divided into per-user state
and shared state and dependencies between the two
types must be respected on rewind and replay; similar
issues apply to the logs of user actions used for replay.

4 A 3R-Undo Prototype: Design of 
an Undoable Email System
We are implementing a prototype of our 3R undo model
in the context of Internet and enterprise email. We chose
email as our first target application as it has become an
essential service for today’s enterprises, often acting as
the communications “nervous system” for businesses
and individuals alike, and it is one of the most common
services offered by network service vendors. Email sys-
tems also offer many opportunities for operator error
and retroactive repair. For example, retroactive repair is
useful in an email system when viruses or spammers
attack: with an undo system, the operator can rewind the
system back to the point before the virus or spam attack
began, retroactively install a filter to block the attack,
then replay the system back to the present time. Further-
more, the undo abstraction could be propagated up to
the user, allowing the user to recover from inadvertent
errors such as accidentally deleting messages or folders
without involving the sysadmin.

Figure 1 illustrates how our prototype is imple-
mented as a proxy wrapping an existing IMAP/SMTP-
based email server. Further discussion of the prototype
has been omitted from this abstract due to space limita-
tions, but will appear in the final version.

5 Conclusions and Future Work
Traditional approaches to dependability have not eradi-
cated failure and they do not address the problems of
operator-induced and operator-compounded failures. To
meet the demand for dependable infrastructure systems,
we must consider these unavoidable human factors and
develop recovery mechanisms that address them. Our
system-level undo mechanism does just that: it provides
a tool that compensates for the weaknesses of human
operators, allows them to erase the effects of their mis-
takes, and harnesses hindsight to enable retroactive
repair, all while preserving the data that users care
about. 

Although we have taken the first steps toward
exploring the issues and challenges associated with
implementing system-level undo, there is a great deal
more to be done, ranging from a further exploration of
the issues raised in Section 3 and their solutions, to
studying the applicability of the 3R undo model to a
broader range of applications, to examining the feasibil-
ity of exporting the 3R undo abstraction at a finer granu-
larity to the end-user. We are pursuing these issues, and
would welcome company in further developing what we
see as an essential mechanism for the dependability of
tomorrow’s computer systems.

References
[1] A. Borg, W. Blau, W. Graetsch et al. Fault Tolerance

Under UNIX. ACM TOCS, 7(1):1–24, February 1989.
[2] A. Brown and D. A. Patterson. “To Err is Human.” Proc.

2001 Workshop on Evaluating and Architecting System
dependabilitY, Göteborg, Sweden, July 2001.

[3] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A Sur-
vey of Rollback-Recovery Protocols in Message-Passing
Systems. CMU TR 96-181, Carnegie Mellon, 1996.

[4] P. Enriquez. “Failure Analysis of the PSTN.” Unpub-
lished talk available at http://roc.cs.berkeley.edu/
retreats/spring_02/d1_slides/RocTalk.ppt, January 2002.

[5] D. E. Lowell, S. Chandra, and P. Chen. Exploring Failure
Transparency and the Limits of Generic Recovery. Proc.
4th OSDI. San Diego, CA, October 2000.

[6] C. Mohan, D. Haderle, et al. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead Logging. ACM
Trans. Database Systems, 17(1): 94–162, 1992.

[7] D. Oppenheimer and D. A. Patterson. “Architecture,
operation, and dependability of large-scale Internet ser-
vices.” Submission to IEEE Internet Computing, 2002.

[8] J. Reason. Human Error. Cambridge University Press,
1990.

Email Server
Includes:

- user state
- mailboxes
- application
- operating system

Non-overwriting
Storage

Undo
Log

Undo Layer

Undo
Proxy

State
Tracker

SMTP

IMAP

SMTP

IMAP

control

Email Server
Includes:

- user state
- mailboxes
- application
- operating system

Non-overwriting
Storage

Undo
Log

Undo Layer

Undo
Proxy

State
Tracker

SMTP

IMAP

SMTP

IMAP

control

Figure 1: Architecture of Undo layer for email. During nor-
mal operation, the proxy snoops traffic destined for the mail
server and logs mail delivery and user interactions. The proxy
also monitors accesses to messages and folders to track exter-
nalized state. Upon an undo request, the non-overwriting stor-
age layer is rolled back to the undo point, the operator is
allowed to perform any needed repairs, and then the proxy is
used to replay the logged user interactions that were lost dur-
ing the rollback.


