Studying and using failure data from large-scale Internet services

David Oppenheimer and David A. Patterson
University of California at Berkeley, EECS Computer Science Division
387 Soda Hall #1776, Berkeley, CA, 94720-1776, USA
{davi dopp, patterson} @s. ber kel ey. edu

Abstract

Large-scale Internet services are the newest and arguably
the most commercially important class of systems requir-
ing 24x7 availability. As a result, very little information
has been published about their causes of failure. In an
attempt to address this deficiency, we have analyzed
detailed failure reports from three large-scale Internet ser-
vices. Our goals are to (1) identify the major factors con-
tributing to user-visible failures, (2) evaluate the
(potential) effectiveness of various techniques for prevent-
ing and mitigating service failure, and (3) build a fault
model for service-level dependability and recovery bench-
marks. Our initial results indicate that operator error and
network problems are the leading contributors to user-vis-
ible failures, that failures in custom-written front-end soft-
ware are significant, and that online testing and more
thoroughly exposing and handling component failures
would reduce failure rates in at least one service.

1. Introduction

The number and popularity of large-scale Internet ser-
vices such as Google, MSN, and Yahoo! have grown sig-
nificantly in recent years. Moreover, such services are
poised to increase in importance as they become the repos-
itory for data in ubiquitous computing systems and the
platform upon which new global-scale services and appli-
cations are built. These services’ large scale and need for
24x7 operation have led their designers to incorporate a
number of techniques for achieving high availability.
Nonetheless, failures still occur.

While the architects and operators of these services
might see such problems as failures on their part, these
system failures provide important lessons for the systems
community about why large-scale systems fail, and what
techniques are or would be effective in preventing compo-
nent failures from causing user-visible service failures. In
an attempt to answer the question “Why do Internet ser-
vices fail and what can be done about it?” we have studied
the architecture of, and 62 post-mortem reports of user-
visible failures from, three large-scale Internet services. In
this paper we describe three initial directions for using this

data. First, we identify which service components are most
failure-prone, so that service operators and researchers
know what areas most need improvement. Second, we
examine the applicability of a number of failure mitigation
techniques to the actual failures we observed. Third, we
suggest using the failure data to derive a fault model for
service-level dependability and recovery benchmarks.

2. Survey sites and methodology

We studied an online service/Internet portal (Online), a
global content hosting service (Content), and a high-traf-
fic, read-mostly Internet service (ReadMostly). Physically,
all of these services are housed in geographically distrib-
uted colocation facilitie and use commodity hardware and
networks. Architecturally, they are built from a load-bal-
ancing tier, a stateless front-end tier, and a back-end tier
that stores persistent data; and they use multiple levels of
redundancy and load balancing for performance and avail-
ability. Operationally, they use primarily custom-written
software to provide and administer the service; they
undergo frequent software upgrades and configuration
updates; and they operate their own 24x7 Systems Opera-
tions Centers staffed by operators who monitor the service
and respond to problems.

The services we examine differ slightly in their work-
lods and node hardware. Online and ReadMostly each
receive about 100 million hits per day, while Content
receives about 7 million. The ratio of writes to reads in
Online and Content is moderate, while that in ReadMostly
is (as the name implies) low. Finally, all three services use
x86-based PCs running open-source operating systems
throughout their service, except for Online which uses
Network Appliance fileservers for back-end storage.

Because we are interested in why and how large-scale
Internet services fail, we studied individual problem
reports rather than aggregate availability statistics. The
operations staff of all three services use problem-tracking
databases to record information about component and ser-
vice failures. Two of the services (Online and Content)
gave us access to these databases, and one of the services
(ReadMostly) gave us access to the problem post-mortem
reports written after every major user-visible service fail-

ure. For Online and Content, we defined a user-visible
failure as one that theoretically prevents an end-user from
accessing the service or a part of the service (even if the
user is given a reasonable error message) or that signifi-
cantly degrades a user-visible aspect of system perfor-
mance?.

We studied 16 failures from Online, and 23 from each
of ReadMostly and Content. These problems corresponded
to the user-visible failures during four months at Online,
six months at ReadMostly, and a month at Content. Note
that it is not fair to compare the services directly, as the
functionality of the custom-written software at Online is
richer than that of ReadMostly, and Content is more com-
plicated than either of the other two services (e.g., Content
counts as service failures not only failures of equipment in
its colocation sites, but also failures of client proxy nodes
it distributes to its users, including situations in which
those client proxies cannot communicate with the coloca-
tion facilities). But because we studied all user-visible fail-
ures for each service, and used approximately the same
definition of failure for choosing (or having chosen for us)
the problems to examine from each of the services, we
believe our conclusions as to relative failure causes are
meaningful.

We attributed the cause of a system failure to the first
component that failed in the chain of events leading up to
the service failure, and the nature of that component’s fail-
ure to the type of flaw (fault) that was the root cause of the
failure. In particular, the failing component was catego-
rized as front-end node, back-end node, or network, and
the underlying cause of the failure as hardware, software,
environment, operator error, or unknown (indetermin-
able). Note that the underlying flaw may have remained
latent for an arbitrary period of time, only to cause a com-
ponent to fail when another component subsequently
failed or the service was used in a particular way for the
first time. Front-end nodes are those initially contacted by
end-user clients, as well as the client proxy nodes used by
Content. Using this definition, front-end nodes do not
store persistent data (though they may cache data), while
back-end nodes do store persistent data. The “business
logic” of traditional three-tier systems terminology is
therefore part of front-end, a reasonable decision because
these services integrate their service logic with the code
that receives and replies to user client requests.

Lugi nificantly degrades a user-visible aspect of sys-
tem performance” is admittedly a vaguely-defined metric. A more
precise definition of failure would involve correlating component failure
reports with degradation in some aspect of observed system performance
such as response time. But even where these services measured and
archived response times for the time period studied, we are not guaran-
teed to detect all user-visible failures, due to the periodicity and place-
ment in the network of the probes. Thus our definition of user-visible is
problems that were potentially user-visible, i.e., visible if a user tried to
access the service during the failure.

Most problems were relatively easy to map into this
two-dimensional component-flaw space, except for wide-
area network problems. Such problems affected the links
between colocation facilities for all services, and, in the
case of Content, also between customer sites and coloca-
tion facilities. Because the root cause of such problems
often lay somewhere in the network of an Internet Service
Provider to whose records we did not have access, the best
we could do with such problems was to label them as net-
work and due to a flaw of unknown cause.

3. Analysis of problem causes

Classifying the 62 problems we reviewed has allowed
us to make a number of observations about the causes of
user-visible service failures. The data from which we
make these observations are summarized in Table 1, which
breaks down problem causes by the part of the service
containing the root cause, and in Table 2, which breaks
down problem causes by the component that failed and the
underlying cause of the failure.

Table 1 shows that contrary to conventional wisdom,
front-end machines can be a significant source of failure.
In the services we studied, this was largely due to the com-
plexity of the service software running on those machines
and the complexity of configuring and administering
them.

Table 2 shows that operator error and networking
problems are a significant cause of failure. In Online and
Content, operator error caused more failures than did node
hardware or software failures, while in ReadMostly net-
working problems caused more failures than did node
hardware or software problems. Networking failures were
prominent because networks tended to be a single point of
failure--services often use only one network switch to con-
nect their server racks to the colocation site’s network, and
colocation facilities often used only one Internet Service
Provider (indeed, such facilities are often owned and oper-
ated by an ISP). This latter fact means that even colocation
sites with multiple physical Internet links may be
adversely impacted by a single upstream Internet failure.
We also observed that while geographic redundancy tends
to reduce the incidence of complete service unavailability,
many Internet problems nonetheless become user-visible

fgc;]rét- back-end | network
Online 63% 25% 13%
Content 57% 17% 26%
RdMostly 4% 9% 87%

Table 1: Failure cause by part of service.

because of non-fail-stop failure modes of Internet links,
and delays in detecting a problem and then updating glo-
bal load balancing tables. Colocation facilities did appear
effective in eliminating “environmental” problems--only
one environmental problem in our study led to a user-visi-
ble failure, and that problem was a power failure at one of
Content’s customer sites, not at a colocation site.

4. Techniques for mitigating failure

Given that user-visible failures are inevitable despite
these services’ attempts to prevent them, how could the
failures have been avoided or their impact reduced? To
answer this question, we analyzed each of the 62 problem
reports, asking whether any of a number of techniques that
have been suggested for improving availability could
potentially

* prevent the original component fault (e.g., a double-
bit memory error, a software bug, an error in a config-
uration file, or an incorrect operator command),

* prevent a component fault from turning into a com-
ponent failure,

« reduce the severity of degradation in user-perceived
system quality of service (QoS) due to a component
failure (i.e., reduce the degree to which a system fail-
ure is observed),

* decrease the TTD: time from component failure to
detection of the failure,

 decrease the TTR: time from component failure
detection to component repair (i.e., the time during
which system QoS is degraded).

The above categories can be viewed as a state machine
or timeline, with component fault leading to component
failure, causing a user-visible system failure; the compo-
nent failure is eventually detected and repaired, returning
the system to its failure-free QoS.

The techniques we investigated for their potential
effectiveness were

e redundancy: replicating data, computational func-
tionality, and/or networking functionality [2]

« isolation/partitioning: increasing isolation between
software components, to reduce failure propagation

« restart: periodic rebooting of hardware and restarting
of software

« fault injection and load testing: explicitly testing
failure-handling code and system response to over-
load by artificially introducing failure and overload
scenarios, either into components before deployment
or into the production system

« testing: testing the system for correct behavior given
normal inputs, either in components before deploy-
ment or in the production system

« config: using tools to check that low-level configura-
tion files meet sanity constraints

e exposing: better exposing software and hardware
component failure to other modules and/or to a moni-
toring system

Table 3 shows the number of problems from Online’s
problem tracking database for which use, or more use, of
each technique could potentially have prevented the prob-
lem that directly caused the system to enter the corre-
sponding failure state. A given technique generally
addresses only one or a few system failure states; we have
listed only those we consider feasible.

Note that if a technique prevents a problem from caus-
ing the system to enter some failure state, it also necessar-
ily prevents the problem from causing the system to enter
a subsequent failure state. For example, checking a config-
uration file might prevent a component fault, which there-
fore prevents the fault from turning into a system-level
failure, a degradation in QoS, a need to detect the failure,
and a need to repair the failure. However, our methodol-
ogy only counts this as preventing a component fault, so as
to more precisely pinpoint the effect of the technique.
Finally, note that techniques that reduce time to detect or
time to repair component failure reduce the overall service

node node
node op | netop net hw | node sw| netsw netunk | env
hw unk
Online 44% 0% 13% 6% 31% 0% 0% 6% 0%
Content 35% 4% 0% 0% 26% 0% 9% 22% 4%
Read- 13% 9% 0% 17% 0% 26% 0% 35% 0%
Mostly

Table 2: Failure cause by component and fault type. The component is described as node (node) or network (net),
and fault type is described as operator error (op), hardware (hw), software (sw), unknown (unk), or environment.

Operator and network failure are the leading causes of service failure.

loss experienced (we define the loose notion of “overall
service loss” as the amount of QoS lost during the failure,
multiplied by the duration of the failure).

From Table 3 we observe that a large number of the
problems Online experienced might have been prevented
or mitigated by more online testing, increased redundancy;,
and more thoroughly exposing and reacting to software
and hardware failures. Automatic sanity checking of con-
figuration files, and online fault and load injection, also
appear to offer significant potential benefit.

Additional results from the three services, including an
analysis of time-to-repair for the various types of failures,
the causes of non-user-visible failures, and lessons from
individual problem case studies, can be found in [3].

system # of
. failure state | instances
technique . .
avoided/ potentially
mitigated avoided
redundancy system failure 8
isolation/part. system failure 2
restart component fail 1
pre-fault/load component fault 2
online fault/load | component fail 3
pre-testing component fault 1
online testing component fail 11
config component fault 3
expose/monitor TTD 8
expose/monitor TTR 9

Table 3: Potential benefit from using in Online vari-
ous proposed techniques for avoiding or mitigating
service failures. Nineteen problems were examined
(rather than sixteen as in Section 3) because here we
have also included problems whose sources were
external to the service (i.e., due to failure in an Inter-
net site that Online uses to provide part of its ser-
vice). Pre-fault/load refers to fault injection and load
testing prior to system deployment, while online
fault/load refers to such testing conducted in a pro-
duction environment. Pre-testing and online testing
having similar meanings, but for correctness testing.
Those techniques that Online is already using are
indicated in bold; in those cases we evaluate the ben-
efit from using the technique more extensively.

5. Fault models for service-level benchmarks

In addition to indicating where to focus efforts for
improving availability, and helping to evaluate the poten-
tial effectiveness of specific techniques, the failure data
we have collected can be used to create a fault (or, to use
our terminology, component failure) model for service-
level benchmarks. Recent benchmarking efforts have
focused on component-level dependability by observing
single-node application or OS response to mishehaving
disks, system calls, and the like. But because we found a
significant contribution to service failure of human error
(particularly multi-node configuration problems) and net-
work (including WAN) problems, we suggest a more
holisitc approach. In service-level benchmarks, a small-
scale replica (or a physically or virtually isolated partition)
of a service is created, and Quality of Service for a repre-
sentative service workload mix is measured while repre-
sentative component failures (e.g., those described in this
paper) are injected. To simplify this process, one might
measure the QoS impact of individual component failures
or multiple simultaneous failures, and then weight the
degraded QoS response to these recovery events by either
the relative frequency with which the different classes of
component failure occur in the service being bench-
marked, or using the representative proportions we found
in our survey. As suggested in [1], the human operator role
in both causing and repairing failures, and in conducting
normal service administrative tasks, should be included .

6. Conclusion

From a study of 62 user-visible failures in three large-
scale Internet services, we observe that front-ends are a
more significant problem than is commonly believed, that
operator error and network problems are leading contribu-
tors to user-visible failures, and that more thoroughly
exposing and handling component failures would reduce
failure rates in at least one service. Because human error
and network problems dominante, we argue for service-
level benchmarks that replicate a service’s hardware and
software architecture, its component dependencies, its
workload, its failure modes, and its human operator tasks.

References

[1] Brown, A., L. C. Chung, D. A. Patterson. Including the
Human Factor in Dependability Benchmarks. 2002 DSN
Workshop on Dependability Benchmarking, 2002.

[2] J. Gray. Why Do Computers Stop and What Can Be Done
About 1t? Symposium on Reliability in Distributed Software
and Database Systems, 1986.

[3] D. Oppenheimer. Why do Internet services fail, and what
can be done about it? UC Berkeley Technical Report UCB-
CSD-02-1185, 2002.

