
Pinpoint: Problem Determination in Large, Dynamic Internet Services

Mike Y. Chen, Emre Kıcıman*, Eugene Fratkin*, Armando Fox*, Eric Brewer
Computer Science Division, University of California, Berkeley

*Computer Science Department, Stanford University�
mikechen, brewer � @cs.berkeley.edu,

�
emrek, fratkin, fox � @stanford.edu

Abstract

Traditional problem determination techniques rely on
static dependency models that are difficult to generate ac-
curately in today’s large, distributed, and dynamic appli-
cation environments such as e-commerce systems. In this
paper, we present a dynamic analysis methodology that au-
tomates problem determination in these environments by 1)
coarse-grained tagging of numerous real client requests as
they travel through the system and 2) using data mining
techniques to correlate the believed failures and successes
of these requests to determine which components are most
likely to be at fault. To validate our methodology, we have
implemented Pinpoint, a framework for root cause analy-
sis on the J2EE platform that requires no knowledge of the
application components. Pinpoint consists of three parts:
a communications layer that traces client requests, a fail-
ure detector that uses traffic-sniffing and middleware in-
strumentation, and a data analysis engine. We evaluate
Pinpoint by injecting faults into various application com-
ponents and show that Pinpoint identifies the faulty compo-
nents with high accuracy and produces few false-positives.

Keywords: Problem Determination, Problem Diagnosis,
Root cause Analysis, Data Clustering, Data Mining Algo-
rithms

1. Introduction

Today’s Internet services are expected to be running
24x7x365. Given the scale and rate of change of these ser-
vices, this is no easy task. Understanding how any given
client request is being fulfilled within a service is difficult
enough; understanding why a particular client request is
not working—determining the root cause of a failure—is
an even greater challenge.

Internet services are very large and dynamic systems.
The number of software and hardware components in these
systems increases as new functionalities are added and as
components are replicated for performance and fault toler-

ance, often increasing the complexity of the system. Ad-
ditionally, as services become more dynamic, e.g., to pro-
vide personalized interfaces and functionality, the way that
client requests are serviced becomes more and more varied.
With the introduction of Internet-wide service frameworks
encouraging programmatic interactions between distributed
systems, such as Microsoft’s .NET [20] and Hewlett-
Packard’s E-Speak [15], the size and dynamics of a typical
Internet service will only continue to increase.

Today, a typical Internet service has many components
divided among multiple tiers: front-end load balancers, web
servers, application components, and backend databases, as
well as numerous (replicated) subcomponents within each
[22]. As clients connect to these services, their requests are
dynamically routed through this system. Current Internet
services, such as Hotmail [8], a web-based email service,
and Google [7], a search engine, are already hosted on thou-
sands of servers and continue to grow.1 The large size of
these systems, together with the increase in their dynamic
behavior, means an increase in their complexity and more
potential for failures to occur due to unanticipated “interac-
tion” faults among components. That these failures actually
occur is evidenced by the fact that few services deliver avail-
ability over 99.9% in a real-world operating environment.

1.1. Background

The focus of this paper is problem determination: detect-
ing system problems and isolating their root causes. Current
root cause analysis techniques use approaches that do not
sufficiently capture the dynamic complexity of large sys-
tems, and they require people to input extensive knowl-
edge about the systems [24, 4]. Most root cause analysis
techniques, including event correlation systems, are based
on static dependency models describing the relationships
among the hardware and software components in the sys-
tem. These dependency models are used to determine which
components might be responsible for the symptoms of a
given problem [5, 25, 6, 13]. The first major limitation

1Hotmail 7000+ [11], Google 8000+ [14]



of traditional dependency models is the difficulty of gen-
erating and maintaining an accurate model of a constantly
evolving Internet service. Their second major limitation is
that they typically only model a logical system, and do not
distinguish among replicated components. However, since
large Internet services have thousands of replicated compo-
nents, there is a need to distinguish among them to find the
instance of the component that is at fault.

1.2. A Data Clustering Approach

We propose a new approach to problem determination
that better handles large and dynamic systems by:

1. Dynamically tracing real client requests through a sys-
tem. For each request, we record its believed success
or failure, and the set of components used to service it.

2. Performing data clustering and statistical techniques
to correlate the failures of requests to the components
most likely to have caused them.

Tracing real requests through the system enables us to
support problem determination in dynamic systems where
using dependency models is not possible. This tracing
also allows us to distinguish between multiple instances of
what would be a single logical component in a dependency
model.

By performing data clustering to analyze the successes
and failures of requests, we attempt to find the combina-
tions of components that are most highly correlated with the
failures of requests, under the belief that these components
are causing the failures. By analyzing the components that
are used in the failed requests, but are not used in success-
ful requests, we provide high accuracy with relatively low
number of false positives. This analysis detects individual
faulty components, as well as faults occurring due to inter-
actions among multiple components. This approach is well
suited for large and dynamic Internet services because:

� Live tracing of client requests allows us to analyze both
the logical and physical behavior of a system. Because
tracing does not require human intervention to adapt to
system changes, Pinpoint scales to constantly evolving
Internet services.

� Data clustering techniques allow us to quickly sum-
marize the large amount of collected traces, and corre-
late them with believed failures. Because the Pinpoint
analysis is automated, it does not require extra effort
on the part of service developers and operators to run
on large services.

The Pinpoint approach does make two key assumptions
about the system being measured. First, the system’s nor-
mal workload must exercise the available components in

different combinations. For example, if two components
were always to be used together, a fault in one would
not be distinguishable from a fault in the other. Sec-
ondly, our data clustering approach assumes that requests
fail independently—they will not fail because of the activi-
ties of other requests. These assumptions are generally valid
in today’s large and dynamic Internet services. Service re-
quests tend to be independent of one another, due to the
nature of HTTP, and the highly replicated nature of Inter-
net service clusters allows components to be recombined in
many ways to avoid single-points of failure.

We have implemented our approach in a prototype sys-
tem called Pinpoint, and used Pinpoint to identify root
causes in a prototype e-commerce environment based on
the Java 2 Platform Enterprise Edition (J2EE) demonstra-
tion application, PetStore [21]. We use a workload that
mimics the request distribution of the TPC web e-commerce
ordering benchmark (TPC-WIPSo) [2]. We instrumented
J2EE server platform to trace client requests at every com-
ponent, and had a fault-injection layer that we used to inject
4 types of faults. The results demonstrate the power of our
approach. We were able to automatically identify the root
causes of single-component failures 80-90% of the time
with an average rate of 40-50% false positives without any
knowledge of the components and the requests. The rate of
false positives is better than other common approaches that
achieve similar accuracies.

The contributions of this paper are: 1) a dynamic analy-
sis approach to problem determination that works well and
2) a framework that enables separation of fault detection
and problem determination from application-level compo-
nents. The rest of this paper describes our approach to au-
tomating problem determination and the experimental val-
idation of this work. Sections 2 and 3 present a detailed
design and implementation of a framework, Pinpoint, that
uses our approach. Section 4 describes our experimental
validation. Section 5 discusses limitations of Pinpoint and
previous work and future work in this area. We conclude in
Section 6.

2. The Pinpoint Framework

To validate our data clustering approach to problem
determination, we designed and implemented Pinpoint, a
framework for problem determination in Internet service
environments. Our framework, shown in Figure 1, provides
three major pieces of functionality to aid developers and ad-
ministrators in determining the root cause of failures:

Client Request Traces: By instrumenting the middleware
and communications layer between components, Pin-
point dynamically tracks which components are used
to satisfy each individual client request.



A B C

Communications Layer
(Tracing & Internal F/D)

External
F/D

Statistical
Analysis

1,A
1,C
2,B
...

Trace
Log

1,Success
2, Fail
3, ...

Fault
Log

Detected
Faults

Components

#3

#1

#2

Requests

Figure 1. The Pinpoint Framework.

Failure Detection: Pinpoint provides both internal and ex-
ternal monitoring of a system to detect whether client
requests are succeeding or failing. Internal fault-
detection is used to detect assertion failures and ex-
ceptions, including errors that are later masked by the
system. External fault-detection is used to detect end-
to-end failures not otherwise detectable.

Data Clustering Analysis: Pinpoint combines the data
from tracking client requests with success and failure
data for each request and feeds it into a data analysis
engine to discover faulty components and component
interactions.

2.1. Client Request Tracing

As a client request travels through the system, we are in-
terested in recording all the components it uses, at various
granularities. At a coarse granularity, we are interested in
the machines and, depending on the size of the service, the
clusters being used. At a finer granularity, we are interested
in logging individual software components, component ver-
sions, and, if practical, even individual data files (such as
database tables, and versions of configuration files). Our
goal is to capture as much information about possible dif-
ferentiating factors between successful and failed requests
as is practical.

When a client request first arrives at the service, the re-
quest tracing subsystem is responsible for assigning the re-
quest a unique ID and tracking it as it travels through the
system. To avoid forcing extra complexity and excessive
load on the components being traced, the tracing subsystem

generates simple log outputs in the form of � request ID,
component ID � pairs. This information is separately col-
lated into complete lists of all components each request
touched.

By modifying the middleware beneath the application
components we are interested in, we can record the ID of
every request that arrives at a specific component without
having any knowledge of the applications and without mod-
ifying the components. When an application component
makes a nested call to another component, the middleware
records that another component is about to be used, and
forwards the request ID to the next component along with
the call data. The changes required to implement this sub-
system can often be restricted to the middleware software
alone, thus avoiding modifying application-level compo-
nents. Whether this is possible depends on the specific mid-
dleware framework used and details of the inter-component
communication protocol.

2.2. Failure Detection

While the tracing subsystem is recording components
being used by client requests, an orthogonal subsystem is
attempting to detect whether these client requests are suc-
cessfully completing. Though it is not possible to detect all
failures that occur, some failures are more easily noticeable
from either inside or outside of the service. Therefore, our
framework allows for both internal and external failure de-
tection to be used.

Internal failure detection is used to detect errors that
might be masked before becoming visible to users. For ex-
ample, a frontend failure that gets replaced by a hot swap
may have no externally visible effects. Though these fail-
ures do not become visible to the users, system adminis-
trators should still be interested in tracking these errors to
repair the systems. Internal failure detectors also have the
option of modifying the middleware to track assertions and
exceptions being generated by application components.

External failure detection is used to detect faults that will
be visible to the user. This includes complete service fail-
ures, such as network outages or machine crashes. External
detection can also be used to identify application-specific
errors that generated user-visible messages.

Whenever a failure or success is detected, the detection
subsystem logs this along with the ID of the client request.
To be consistent with the logs of the client tracing subsys-
tem, the two subsystems must either pass client request ids
between each other, or use deterministic algorithms for gen-
erating request IDs based on the client request itself.



Client Request ID Failure Component A Component B Component C

1 0 1 0 0
2 1 1 1 0
3 1 0 1 0
4 0 0 0 1

Table 1. A sample input matrix for data analysis

2.3. Data Analysis

Once the request traces and failure/success logs are avail-
able, they are given to Pinpoint’s analysis subsystem. A
sample input is shown in Table 1. The data analysis uses
a data clustering algorithm to discover sets of components
that are highly correlated with failures of requests.

Clustering algorithms structure data by grouping similar
data points together. In our analysis, we calculate similarity
based on how often components are and are not used to-
gether in requests. The details of the clustering algorithms
we used in our implementation are presented in Section 3.3.

Before running this clustering analysis, we first must pre-
pare the data. During the logging stage, our requests are in-
dexed by request ID, with each request ID matched to the
components used in that request. We transpose this data
for the clustering process and instead index by component,
matching each to the requests it was used in. We also add a
failure data point and mark it with all the requests that we
believe have failed.

The clustering algorithm then groups these components
and the failure data point together. The interesting result,
for our purposes, is the set of components clustered with our
failure data point. These are the components whose occur-
rences are most correlated with failures, and hence where
the root cause is likely to lie.

3. Pinpoint Implementation

We have implemented a prototype of Pinpoint on top of
the J2EE middleware platform, a network sniffer, and an
analyzer based on standard data clustering techniques. Our
prototype does not require any modifications to be made to
J2EE applications. Only our external fault detection mod-
ule requires application-specific checks—and these do not
require modification of application components. For this
reason, Pinpoint can be used as a problem determination
aid for almost any J2EE application.

3.1. J2EE Platform

Using Sun’s J2EE 1.2 single-node reference implemen-
tation as a base, we have made modifications to support

client request tracing and simple fault detection. We have
also added a fault injection layer, used for evaluating our
system. We discuss fault injection as part of our experimen-
tal setup in Section 4.1.1.

J2EE supports three kinds of components: Enterprise
JavaBeans, often used to implement business and applica-
tion logic; Java Scripting Pages (JSP) used to dynamically
build HTML page; and JSP tags, components that provide
extensions to JSP. We have instrumented each of these com-
ponent layers.

We assign every client HTTP requests a unique ID as
it enters our system. We store this unique ID in a thread-
specific local variable and also return it in an HTTP header
for use by our external fault detector. With the assump-
tion that components do not spawn any new threads and the
fact that the reference implementation of J2EE we are using
does not support clustering, storing the request ID in thread-
specific local state was sufficient for our purposes. If a com-
ponent had spawned threads, we would likely have had to
modify the thread creation classes or the application com-
ponent to ensure the request ID was correctly preserved.
Similarly, if our J2EE implementation used clustering, we
would have to modify the remote method invocation pro-
tocol and/or generated wrapper-code to automatically pass
the request ID between machines.

Our modified J2EE platform’s internal fault detection
mechanism simply logs exceptions that pass across com-
ponent boundaries. Though this is a simple error detection
mechanism, it does catch many real faults that are masked
and difficult to detect externally. For example, when run-
ning an e-commerce demonstration application, a faulty in-
ventory database will generate an exception, which will be
masked with the message “Item out of stock” before being
shown to the user. Our internal fault detection system is
able to detect this fault and report it before it is masked.

3.2. Layer 7 Packet Sniffer

To implement our external failure detector, we have built
a Java-based Layer 7 network sniffer engine, called Snif-
flet. It is built on a network packet capture library, Jpcap
[1], which provides wrappers around libpcap [17] to capture
TCP packets from the network interface. We have imple-
mented TCP and HTTP protocol checkers to monitor TCP



and HTTP failures. Snifflet uses a flexible logging package,
log4j [12] from the Apache group, to log detected failures.

Snifflet detects TCP errors such as resets and timeouts,
including server freezes, and detects HTTP errors such as
404 (Not found) and 500 (Internal server error). It also pro-
vides an API that enables programmers to analyze HTTP
requests and responses, including content, for customized
failure detection. We have implemented custom content de-
tectors for the J2EE server that looked for simple failed re-
sponses, such as “Included servlet error”.

Snifflet listens for client request IDs in the HTTP re-
sponse headers of the service. Some failures, such as when
a client cannot connect to a service, occur before Snifflet
can find an ID for a client request. In these cases, Snifflet
generates its own unique request ID for logging purposes.

3.3. Data Clustering Analysis

In our implementation of Pinpoint, we use a hierarchical
clustering method, an unweighted pair-group method using
arithmetic averages (UPGMA), and calculate distances be-
tween components using the Jaccard similarity coefficient.
For our purposes, UPGMA’s main advantage is that it cal-
culates distances between clusters by averaging the distance
among all pairs of points within the clusters. This provides
a much less extreme calculation of this distance than other
methods, which use a nearest-neighbor or farthest-neighbor
calculation. The Jaccard similarity coefficient calculates
distance between two points based on the ratio of the num-
ber of requests they appear in together out of all the requests
the two points appear in total. More details on these algo-
rithms can be found in standard data clustering textbooks,
such as [23, 18].

4. Evaluation

To validate our approach, we ran an e-commerce service,
the J2EE PetStore demonstration application, and system-
atically injected faults into the system over a series of runs.
We used Pinpoint to monitor the system and diagnose the
faults that we injected, and compare its results to other prob-
lem determination techniques. In this section, we detail our
experimental setup, describe the metrics we used to evaluate
Pinpoint’s efficacy, and present the results of our trials.

4.1. Experimental Setup

We ran 133 tests that included single-component faults
and faults triggered by interactions between two, three and
four components. For each test, we ran the PetStore ap-
plication, monitored by Pinpoint, for five minutes. During
this period, we ran a client emulator that generated a work-
load on the application, while injecting deterministic faults

into the system. We restarted the application server between
each test to avoid contaminating a run with residual faulty
behavior from previous runs. The setup was a closed sys-
tem with a single transaction active at any time. Different
transactions used different sets of components.

Our physical machine setup has a server running on one
machines and clients on another. The J2EE server runs
on a quad-PIII 500MHz with 1GB of RAM running Linux
2.2.12 and Blackdown JDK 1.3. For convenience, Snifflet
also runs on the same machine. The clients run on a PIII
600MHz with 256MB of RAM running Linux 2.2.17 and
Blackdown JDK 1.3.

4.1.1 Fault Injection

In our experiments, we model faults that are triggered by the
use of individual components, or interactions among multi-
ple components. A fault is defined by 1) the un-ordered trig-
ger set of “faulty” components which are together respon-
sible for the fault, and 2) the type of fault to be injected. In
these experiments, we inject four different types of faults:

� Declared exceptions, such as Java RemoteExceptions
or IOExceptions.

� Undeclared exceptions, such as runtime exceptions.

� Infinite loops, where the called component never re-
turns control to the callee.

� Null calls, where the called component is never actu-
ally executed.

We chose to inject these particular faults because they
cause failures that span the axes from predictable to unpre-
dictable behaviors, simulating the range (if not the compo-
sition) of problems that can occur in a real system. In real
systems, declared exceptions are often handled and masked
directly by the application code. Undeclared exceptions are
less often handled by the application code, and more of-
ten are caught by the underlying middleware as a “last re-
sort.” Infinite loops simply stop the client request from com-
pleting, while null calls prematurely prevent (perhaps vital)
functionality from working.

It is important to note that our fault injection system is
kept separate from our fault detection system. Though our
internal detection system does detect thrown exceptions rel-
atively trivially, infinite loops are only detectable through
TCP timeouts seen by our external fault detector, the Snif-
flet. The null call fault is usually not directly detectable at
all. To detect null call faults, our fault detection mecha-
nisms must rely on catching secondary effects of a null call,
such as subsequent exceptions or faults.

To inject faults into our system, we modified the J2EE
middleware to check a fault specification table upon every



component invocation. If the set of components used in the
request matches a fault’s trigger set, we cause the specified
fault to occur at the last component in the set that is used.
For example, for a trigger set of size 3, a fault is injected at
the third component in the trigger set used in a request.

4.1.2 Client Browser Emulator

To generate load on our system, we built a client browser
emulator that captures traces of a person browsing a web
site, and then replays this log multiple times during test
runs. The client dynamically replaces cookies, hostname in-
formation, and username/password information in the logs
being replayed to match the current context. For example,
unique user ID’s need to be generated when creating new
accounts, and cookies provided by servers need to be main-
tained within sessions.

The requests include: searching, browsing for item de-
tails, creating new accounts, updating user profiles, placing
orders, and checkout.

4.2. Metrics

To evaluate the effectiveness of Pinpoint, we use two
metrics: accuracy and precision. A result is accurate when
all components causing a fault are correctly identified. For
example, if two components, A and B, are interacting to
cause a failure, identifying both would be accurate. Iden-
tifying only one or neither, would not be accurate. When
we measure the accuracy of a problem determination tech-
nique, we are measuring how often its results are accurate.

Precision, the second metric we use in our evaluation,
is the ratio between correctly identified faults and predicted
faults. For example, predicting the set � A, B, C, D, E � when
only A and B are faulty gives a precision of 40%.

Other fields—including Data Mining, Information Re-
trieval, and Intrusion Detection—use precision and recall,
instead of accuracy. Recall is defined as the ratio between
correctly identified faults and actual faults. For example, if
2 components, A and B, are faulty, identifying both compo-
nents would give a perfect recall of 100%. Identifying only
one of the two components gives a recall of 50%. How-
ever, for fault management systems, we believe accuracy
is a better metric because identifying a subset of the real
causes may misdirect the diagnosis and thus has little value.

A system with low accuracy is not useful because it fails
to identify the real faults. A system that has high accu-
racy with low precision is not useful either because it floods
users with too many false positives. An ideal system would
predict a minimal and correct set of of faults. In practice,
however, there is a tension between having high accuracy
and high precision. Maximizing precision often means that
potential faults are being thrown out, which decreases ac-

curacy. Maximizing accuracy often means that non-faulty
components are also included, which decreases precision.

To visualize the trade-offs an analysis technique makes
between accuracy and precision, we plot its accuracy ver-
sus false positives (1 - precision) as we vary the technique’s
sensitivity. This plot is called a Receiver Operating Charac-
teristic (ROC) curve. Generally, at a very high sensitivity,
an analysis technique will be very accurate, but also return
very many false positives. As we decrease the sensitivity,
we reduce the accuracy, but also reduce the number of false
positives returned. The ROC curve is especially useful be-
cause it allows us to examine analysis’ behavior without ar-
bitrarily choosing a sensitivity value. In our experiments
we evaluate analysis techniques by comparing their ROC
curves.

4.3. Evaluation Results

We compare Pinpoint’s clustering analysis to two tra-
ditional failure analysis techniques. The first is detection,
which returns the set of components recorded by our inter-
nal fault detection framework. This is similar to the result
a monitoring system would generate, returning the compo-
nent where a failure is manifesting. At its lowest sensitivity,
this technique returns the single component where the fault
was detected. At higher sensitivities, detection inspects the
call stack, and returns the components in the call chain.

The second analysis technique we compare ourselves to
is dependency checking, which returns the components that
the failed requests use. In this technique, a component is
nominated as a potential fault if it occurs in more than some
percentage of the failed requests. This percentage is the in-
verse of the sensitivity setting. For example, by setting the
sensitivity to 0%, this technique returns only components
that occurred in 100% of the failed requests. Setting the
sensitivity close to 100% returns all the components used
in any of the failed requests. It is worth noting that our
implementation of dependency checking takes advantage of
Pinpoint’s dynamic request tracing for dependency discov-
ery. Hence, the quality of its results are an over-estimation
of how well dependency checking would perform using a
static model. The key difference between this technique and
Pinpoint’s cluster analysis is that dependency checking does
not take the traces of successful requests into account.

We show in Figure 2 the summary results for all our ex-
periments, comparing Pinpoint with the other techniques.
Note that Pinpoint consistently has both a higher accu-
racy and a higher precision than detection and dependency
checking. This improvement is most striking in the results
for single-component failures, shown in Figure 3. Here, we
see that Pinpoint achieves an accuracy of 80-90% with a
relatively high precision of 50-60%. In comparison, depen-
dency checking never has a precision higher than 20% for



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

False Positive Rate (1 - Precision)

Simple Dependency Analysis
Detection Analysis

Pinpoint Cluster Analysis

Figure 2. Summary accuracy vs. false posi-
tive rate over all tests

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

False Positive Rate (1 - Precision)

Dependency Analysis
Detection Analysis

Pinpoint Cluster Analysis

Figure 3. Accuracy vs. false positive rate for
single-component faults.

similar accuracies.
To better understand how the 3 techniques perform under

latent faults—faults that occur but are not manifested as fail-
ures until a later component is used—we show their ROC
curves as the “fault length” of the latent faults increases,
where fault length is the number of components interact-
ing to cause a failure. Figure 4 shows that Pinpoint has
a very high accuracy and precision for single-component
faults. As we generate latent faults, however, the Pinpoint’s
ROC curve worsens, though it still remains a significant im-
provement as compared to Detection and Dependency anal-
ysis.

In Figure 5 we see that the results of Dependency anal-
ysis do not appear to be affected by the fault length. Al-
though it consistently has a high accuracy (up to 100%),
Dependency always has a very low precision of about 15%.
Figure 6 shows that Detection analysis is heavily affected
by the fault length. Detection always has a high precision

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

False Positive Rate (1 - Precision)

1 Component Faults
2 Component Faults

3 Component Faults
4 Component Faults

Figure 4. Pinpoint’s accuracy vs. false posi-
tive rate for interacting component faults.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

False Positive Rate (1 - Precision)

1 Component Faults
2 Component Faults
3 Component Faults
4 Component Faults

Figure 5. Dependency’s accuracy vs. false
positive rate for interacting component faults.

of about 30%, but its accuracy varies from 50% at single-
component faults, down to 0% accuracy for three or more
component-faults.

4.4. Performance Impact

We compared the throughput of the PetStore application
hosted on an unmodified J2EE server with on our version
with logging turned on. We measured a cold server with a
warm file cache for three 5-minute runs, and found that the
online overhead of Pinpoint to be 8.4%. We did not mea-
sure the overhead of the offline analysis. The uncompressed
trace files generated by Pinpoint average about 2.5k per re-
quest. Compressed, however, they average only 100 bytes
per request.



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

False Positive Rate (1 - Precision)

1 Component Faults
2 Component Faults
3 Component Faults
4 Component Faults

Figure 6. Detection’s accuracy vs. false posi-
tive rate for interacting component faults.

5. Discussion

5.1. Pinpoint Limitations

One limitation of Pinpoint is that it cannot distinguish
between sets of components that are tightly coupled and
are always used together. In the PetStore application, we
have found sets of components that are always used with
the components that we injected faults in, shown in Fig-
ure 7. As a result, Pinpoint reports the super set of the ac-
tual faults. To better isolate faulty components and improve
precision, one potential technique is to create synthetic re-
quests that exercise the components in other combinations.
This is similar to achieving good code coverage when gen-
erating test cases for debugging.

Another limitation of Pinpoint, as well as existing ap-
proaches, is that it does not work with faults that corrupt
state and affect subsequent requests. The non-independence
of requests makes it difficult to detect the real faults because
the subsequent requests may fail while using a different set
of components. For example, a user will not be able to login
if the component responsible for creating new accounts has
stored an incorrect password. The state corruption induced
by the account creation request is subsequently discovered
by the login request. One potential solution is to extend
the current tracing of functional components to trace shared
state. For example, Pinpoint could trace the database tables
used by components to find out which sets of components
share state. Implementing this extension is part of our cur-
rent plans for extending Pinpoint.

Since Pinpoint monitors at the middleware and has no
application knowledge about the requests, deterministic
failures due to pathological inputs can not be distinguished
from other failures. For example, a user may have bad cook-
ies that consistently cause failures. One possible solution is

Figure 7. No. of tightly-coupled compo-
nents associated with each of the compo-
nents where faults were injected

to extend Pinpoint to record the requests themselves and use
them as another possible factor in differentiating failed re-
quests from successful ones.

Pinpoint also does not capture “fail-stutter” faults where
components mask faults internally and exhibit only a de-
crease in performance. Fail-stutter examples include trans-
parent hot swaps and disks getting slower as they fail. Tim-
ing information would need to be used to detect fail-stutter
faults and perform problem determination.

5.2. Application Observations

In the J2EE PetStore application the average number of
application components used in requests of static pages is
3. Using our workload, the average for requests of dynamic
pages is 14.2 with a median of 14 and maximum of 23
(shown in Figure 8). The large number of components used
in requests motivate the monitoring of components at the
middleware layer and the importance of using automated
problem determination techniques.

5.3. Related Work

There has been extensive literature on event correlation
systems [24, 4], mostly in the context of network man-
agement. There are also many commercial service man-
agement systems that aid problem determination, such as
HP’s OpenView [9], IBM’s Tivoli [16], and Altaworks’
Panorama [3]. These systems mainly use two approaches.
The first approach uses expert systems with rules (or fil-
ters) input by humans or obtained through machine learning



Figure 8. Histogram of No. of components
used per dynamically generated page request

techniques. The second approach uses dependency models
[25, 6, 13]. However, these systems do not consider how
the required dependency models are obtained.

More recent research has focused on automatically gen-
erating dependency models. Brown et al. [5] use active
perturbation of the system to identify dependencies and use
statistical modeling of the system to compute dependency
strengths. The dependency strengths can be used to order
the potential root causes, but they do not uniquely iden-
tify the root cause of the problem, whereas our approach
uniquely identifies the root case, and is limited only by the
coverage of the workload. The intrusive nature of their ac-
tive approach also limits its applicability in production sys-
tems. In addition, their approach requires components and
inputs to be identified before the dependencies can be gen-
erated, which is not required in our approach.

Katchabaw et al. [19] introduce a set of libraries that
programmers can use to instrument components to report
their health to a central management system. The approach
requires management code to be written for each compo-
nent, and requires the code to be correct and to function
when the component itself is failing. We take a black-box
approach where we instrument application servers to trace
requests without knowing the implementation details of the
components. Our black-box approach enables independent
auditing of the components without the overhead of writing
additional code for each component.

5.4. Future Work

We plan on investigating additional factors and tradeoffs
that affect accuracy and precision of problem determination.
In particular, we are exploring ways of loosening our as-
sumption of request independence by tracking state sharing

across requests, as well as using timing and performance
logging to diagnose performance degradations in Internet
services. We are also investigating using other statistical
techniques in our analysis. For example, our initial experi-
ences using dependency analysis to discover multiple inde-
pendent faults are promising.

There are also scaling issues that we need to address be-
fore we deploy Pinpoint in a real, large-scale Internet ser-
vice. The current tracing mechanism needs to be extended
to trace across machine boundaries. In addition, techniques
such as request sampling can be used to reduce logging
overhead. We also plan to automate our statistical anal-
ysis process and integrate it with an alert system to pro-
vide on-line analysis of live systems. In addition, we plan
to integrate Pinpoint with other recovery-oriented comput-
ing techniques [10] to further reduce mean time to recovery
(MTTR).

6. Conclusions

This paper presents a new problem determination frame-
work for large, dynamic systems that provides high ac-
curacy in identifying faults and produces relatively few
false positives. This framework, Pinpoint, requires no
application-level knowledge of the systems being moni-
tored or any knowledge of the requests. This makes Pin-
point suitable for use in large and dynamic systems where
this application-level knowledge is difficult to accurately as-
semble and keep current. As such, it is an important im-
provement over existing fault management approaches that
require extensive knowledge about the systems being mon-
itored.

Pinpoint traces requests as they travel through a system,
detects component failures internally and end-to-end fail-
ures externally, and performs data clustering analysis over a
large number of requests to determine the combinations of
components that are likely to be the cause of failures. The
runtime tracing and analysis is necessary for systems that
are large and dynamic, such as today’s Internet systems.

7. Acknowledgements

We are very grateful to Aaron Brown, George Candea,
Kim Keeton, Dave Patterson, and the anonymous reviewers
for their very helpful suggestions.

References

[1] Network Packet Capture Facility for Java. http://
jpcap.sourceforge.net/.

[2] TPC-W Benchmark Specification,
http://www.tpc.org/wspec.html.



[3] Altaworks. Panorama. http://www.altaworks.
com/product/panorama.htm.

[4] A. Bouloutas, S. Calo, and A. Finkel. Alarm Correlation
and Fault Identification in Communication Networks. IEEE
Transactions on Communication, 42(2/3/4), 1994.

[5] A. Brown and D. Patterson. An Active Approach to Char-
acterizing Dynamic Dependencies for Problem Determina-
tion in a Distributed Environment. In Seventh IFIP/IEEE In-
ternational Symposium on Integrated Network Management,
Seattle, WA, May 2001.

[6] J. Choi, M. Choi, and S. Lee. An Alarm Correlation and
Fault Identification Scheme Based on OSI Managed Object
Classes. In IEEE International Conference on Communica-
tions, Vancouver, BC, Canada, 1999.

[7] G. Corporation. Google. http://www.google.com/.
[8] H. Corporation. HotMail. http://www.hotmail.

com/.
[9] H. P. Corporation. HP Openview. http://www.hp.

com/openview/index.html.
[10] David Patterson et al. Recovery Oriented Computing

(ROC): Motivation, Definition, Techniques, and Case Stud-
ies. Technical Report CSD-02-1175, UC Berkeley Com-
puter Science, 2002.

[11] J. Gray. Dependability in the Internet Era.
http://research.microsoft.com/˜gray/
talks/InternetAvailability.ppt.

[12] A. Group. Log4j Project, 2001. http://jakarta.
apache.org/log4j.

[13] B. Gruschke. A New Approach for Event Correlation based
on Dependency Graphs. In 5th Workshop of the OpenView
University Association: OVUA’98, Rennes, France, April
1998.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, third edition,
2002. Chapter 8.12.

[15] HP. e-Speak, 2001. http://www.e-speak.hp.com/.
[16] IBM. Tivoli Business Systems Manager, 2001. http://

www.tivoli.com.
[17] V. Jacobson, C. Leres, and S. McCanne. tcpdump, 1989.

ftp://ftp.ee.lbl.gov/.
[18] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.

Prentice-Hall, 1988.
[19] M. J. Katchabaw, S. L. Howard, H. L. Lutfiyya, A. D. Mar-

shall, and M. A. Bauer. Making distributed applications
manageable through instrumentation. The Journal of Sys-
tems and Software, 45(2):81–97, 1999.

[20] Microsoft. .NET, 2001. http://www.microsoft.
com/net/.

[21] S. Microsystems. Java Pet Store 1.1.2 Blueprint
Application, 2001. http://developer.java.
sun.com/developer/sampsource/petstore/
petstore1_1%_2.html.

[22] D. Oppenheimer and D. A. Patterson. Architecture opera-
tion and dependability of large-scale Internet services. In
Submission to IEEE Internet Computing, 2002.

[23] H. C. Romesburg. Cluster Analysis for Researchers. Life-
time Learning Publications, 1984.

[24] I. Rouvellou and G. W. Hart. Automatic Alarm Correla-
tion for Fault Identification. In INFOCOM, pages 553–561,
1995.

[25] A. Yemini and S. Kliger. High Speed and Robust Event
Correlation. IEEE Communication Magazine, 34(5):82–90,
May 1996.


