
Appears in Proceedingsof the8thWorkshoponHot Topicsin Operating Systems(HotOS-VIII),May 2001

RecursiveRestartability: Turning the RebootSledgehammerinto a Scalpel

GeorgeCandea ArmandoFox
StanfordUniversity�

candea,fox � @cs.stanford.edu

Abstract

Evenafter decadesof software engineeringresearch, complex
computersystemsstill fail, primarily due to nondeterministic
bugs that are typically resolvedby rebooting. Concedingthat
Heisenbugswill remaina fact of life, we proposea systematic
investigationof restartsas “high availability medicine.” In this
paperweshowhowrecursiverestartability(RR)—theability of
a systemto gracefullytolerate restartsat multiple levels— im-
provesfault tolerance, reducestime-to-repair, and enablessys-
temdesigners to build flexible, highly availablesoftware infras-
tructures. Using several examplesof widely deployedsoftware
systems,we identify propertiesthat are required of RRsystems
andoutlineanagendafor turningtherecursiverestartabilityphi-
losophyinto a practicalsoftwarestructuringtool. Finally, wede-
scribeinfrastructural supportfor RRsystems,alongwith initial
ideason howto analyzeandbenchmarksuch systems.

1 Intr oduction

Despitedecadesof researchandpracticein softwareengineer-
ing, latent and pseudo-nondeterministicbugs in complex soft-
waresystemspersist;ascomplexity increases,they multiply fur-
ther, makingit difficult to achievehighavailability. It is common
for suchbugs to causea systemto crash,deadlock,spin in an
infinite loop, livelock,or to developsuchseverestatecorruption
(memoryleaks,danglingpointers,damagedheap)that the only
high-confidencewayof continuingis to restarttheprocessor re-
bootthesystem.

The rebooting“technique”hasbeenaroundas long ascom-
putersthemselves, and remainsa fact of life for substantially
all nontrivial systemstoday. Rebootingcanbe appliedat vari-
ouslevels: Deadlockresolutionin commercialdatabasesystems
is typically implementedby killing andrestartinga deadlocked
threadin hopesof avoiding a repeatdeadlock[15]. Major Inter-
net portalsroutinely kill and restarttheir web server processes
after waiting for them to quiesce,in order to deal with known
memoryleaksthatbuild up quickly underheavy load. A major
searchengineperiodicallyperformsrolling rebootsof all nodes
in their searchenginecluster[3]. Although rebootingis often
only a crude“sledgehammer”for maintainingsystemavailabil-
ity, its useis motivatedby two commonproperties:

1. Restarting works around Heisenbugs. Most software
bugsin productionquality softwareareHeisenbugs[27, 8,
17, 2]. They are difficult to reproduce,or dependon the
timing of externalevents,andoften thereis no otherway
to work aroundthembut by rebooting. Even if the source
of suchbugs can be tracked down, it may be more cost-
effective to simply live with them, as long as they occur
sufficiently infrequentlyandrebootingallows thesystemto
work within acceptableparameters.The time to find and
deploy a permanentfix cansometimesbe intolerablylong.
For example,the Patriot missiledefensesystem,useddur-
ing theGulf War, hadabugin its controlsoftwarethatcould
becircumventedonly by rebootingevery8 hours.Delaysin
sendingafix or therebootworkaroundto thefield led to 28
deadand98woundedAmericansoldiers[34].

2. Restarting can reclaimstaleresourcesand cleanup cor-
rupt state. This returnsthesystemto a known, well-tested
state,albeitwith possiblelossof dataintegrity. Corruptor
stalestate,suchas a mangledheap,can lead to someof
the nastiestbugs, causingextensive periodsof downtime.
Even if a buggy processcannotbe trustedto cleanup its
own resources,entitieswith hierarchicallyhighersupervi-
sory roles(e.g., the operatingsystem)cancleanlyreclaim
any resourcesusedby theprocessandrestartit.

Rebootingis not usuallyconsidereda gracefulway to keepa
systemrunning– mostsystemsarenotdesignedto tolerateunan-
nouncedrestarts,henceexperiencingextensiveandcostlydown-
timewhenrebooted,aswell aspotentialdataloss.Casein point:
UNIX systemsthatareabruptlyhaltedwithoutcalling sync() .

The Gartner Group [31] estimatesthat 40% of unplanned
downtimein businessenvironmentsis dueto applicationfailures;
20%is dueto hardwarefaults,of which80%aretransient[8, 25],
henceresolvablethroughreboot.Startingfrom this observation,
we arguethat in an appropriately designedsystem,we can im-
prove overall systemavailability througha combinationof re-
actively restartingfailed components(revival) andprophylacti-
cally restartingfunctioningcomponents(rejuvenation)to prevent
statedegradationthatmay leadto unscheduleddowntime. Cor-
respondingly, we presentinitial thoughtson how to designfor
recursiverestartability, andoutlinearesearchagendafor system-
atic investigationof thisarea.

1



The paperis organizedas follows: In section2, we explain
how the propertyof beingrecursively restartablecanimprove a
system’soverallavailability. In section3,wepresentexamplesof
existing restartableandnon-restartablesystems.Section4 iden-
tifiessomerequiredpropertiesfor recursively restartablesystems
andproposesan initial designframework. Finally, in section5,
weoutlinearesearchagendafor convertingourobservationsinto
structureddesignrulesandsoftwaretools for building andeval-
uatingrecursively restartablesystems.Many of the basicideas
we leveragehave appearedin the literature,but have not been
systematicallyexploited as a collection of guidelines;we will
highlight relatedwork in thecontext of eachidea.

2 Recursive Restartability Can Impr ove
Availability

“Recursiverestartability”(RR) is theability of a systemto toler-
aterestartsat multiple levels. An examplewould be a software
infrastructurethatcangracefullytoleratefull reboots,subsystem
restarts,andcomponentrestarts.An alternatedefinition is pro-
videdby thefollowing recursiveconstruction:thesimplest,base-
caseRR systemis a restartablesoftwarecomponent;a general
RRsystemis acompositionof RRsystemsthatobeys theguide-
linesof section4. In the presentsectionwe describeproperties
of recursively restartablesystemsthatleadto highavailability.

RR impr ovesfault tolerance. The unannouncedrestartof a
softwarecomponentis seenby all othercomponentsasa tempo-
raryfailure;systemsthataredesignedto toleratesuchrestartsare
inherentlytolerantto all transientnon-Byzantinefailures.Since
most manifestsoftware bugs and hardware problemsare short
lived[25, 27, 8], a strategy of failure-triggered,reactive compo-
nentrestartswill maskmostfaultsfrom the outsideworld, thus
makingthesystemasa wholemorefault tolerant.

RR can make restartscheap. The fine granularityof recur-
siverestartabilityallowsfor aboundedportionof thesystemto be
restarteduponfailure,hencereducingthe impacton othercom-
ponents. This way, the system’s global time-to-repairis mini-
mized(e.g.,full rebootsarereplacedwith partialrestarts),which
increasesavailability. Similarly, RR allows for componentsand
subsystemsto be independentlyrejuvenatedon a rolling basis;
such incrementalrejuvenation,unlike full applicationreboots,
makessoftwarerejuvenation[21] affordablefor a wide rangeof�������

systems.
RR providesa confidencecontinuum for restarts. Thecom-

ponentsof a recursively restartablesystemare tied togetherin
an abstract“restartability tree,” in which (a) siblings are well
isolatedfrom eachotherby the useof simple,high-confidence
machinery, and (b) a parentcan unilaterally start, stop, or re-
claim the resourcesof any of its children,usingthe samekind
of machinery. For example,in a cluster-basednetwork service,
the root of the treewould bean administrator, eachchild of the
root wouldbeanode’sOS,eachgrandchilda processon a node,

and eachgreat-grandchilda kernel-level processthread. This
treecapturesthetradeoff that, thecloserto theroot a restartoc-
curs, the moreexpensive the ensuingdowntime, but the higher
the confidencethat transientfailureswill be resolved. In the
above example,processesarefault-isolatedfrom eachotherby
thehardware-supportedvirtual memorysystem,which is gener-
ally a high-confidencefield-testedmechanism.Thesamemech-
anismalsoallows parentsto reclaimprocessresourcescleanly.
Nodesarefault-isolatedby virtueof their independenthardware.
Whena bug manifests,we canusea cost-of-downtime/benefit-
of-certainty tradeoff to decidewhetherto restartthreads,pro-
cesses,nodes,or theentirecluster.

RR enablesflexible availability tradeoffs. Theproposedre-
juvenation/revival regimencanconvenientlybe tailored to best
suit theapplicationandadministrators:it canbesimple(reboot
periodically)or sophisticated(differentiatedrestarttreatmentfor
eachsubsystem/component).Identicalsystemscanhave differ-
ent revival and rejuvenationpolicies, dependingon the appli-
cation’s requirementsand the environmentthey are in. Sched-
uled non-uniformrejuvenationcan transformunplanneddown-
time into planned,shorterdowntime, and it gives the ability
to more often rejuvenatethosecomponentsthat are critical or
moreproneto failure. For example,a recenthistory of revival
restartsandloadcharacteristicscanbeusedto automaticallyde-
cide how ofteneachcomponentrequiresrejuvenation.Simpler,
coarse-grainedsolutionshave alreadybeenproposedby Huang
et al. [21] andareusedby IBM’ sxSeriesservers[22].

3 Existing Systems

Very few systemstoday can be classifiedas being recursively
restartable.Many systemsdo not toleraterestartsat all, andwe
provide someexamplesin this section.Others,thoughnot nec-
essarilydesignedby following an existing setof RR principles,
fortuitously exhibit RR-friendly properties.Our long term goal
is to derive a canonof designrules,includingtradeoffs andpro-
grammingmodelsemantics,so that future efforts will be more
systematicanddeliberate.

3.1 Poorly RestartableSystems

In softwaresystemsnot designedfor restartability, the transient
failure of oneor morecomponentsoften endsup beingtreated
as a permanentfailure. Dependingon the system’s design,
the resultscanbe anywherefrom inconvenientto catastrophic.
NFS [30] exhibits a flavor of this problem in its implementa-
tion of locking: a crashin the lock subsystemcan result in an
inconsistentlock statebetweena client and the server, which
sometimesrequiresmanualinterventionby an administratorto
repair. The result is that many applicationsrequiringfile locks
testwhetherthey arerunningon top of NFSand,if so,perform
their own locking using the local filesystem,therebydefeating
theNFSlock daemon’spurpose.

2



As a moreseriousexample,in July 1998,the USSYorktown
battleshiplost control of its propulsionsystemdue to a string
of eventsstartedby a dataoverflow. Had the overall system
beenrecursively restartable,its componentscouldhave beenin-
dependentlyrestored,avoidingtheneedto havetheentiremissile
cruisertowedbackto port [10].

Many UNIX applicationsusethe /tmp directoryfor tempo-
rary files. Should/tmp becomeunavailable(e.g.,dueto a disk
upgrade),programswill typically hangin the I/O systemcalls.
Consequently, thesemonolithic,tightly coupledapplicationsbe-
comecrippledandcannotberestartedwithout losingall thework
in progress.

Tightly coupledoperatingsystemsbelongin this category as
well. For example,WindowsNT dependsonthepresenceof cer-
tain systemlibraries(DLLs); accidentallydeletingoneof them
cancausethe entiresystemto hang,requiringa full rebootand
the lossof all applications’work in progress.In the ideal case,
an administratorwould be able to replacethe DLL and restart
the dependentcomponent,allowing the systemto continuerun-
ning. If the failed componentwas,say, the userinterfaceon a
machinerunning a web server, RR would allow availability of
the web serviceto be unaffected. The ability to treatoperating
systemservicesasseparatecomponentscanavoid thesefailures,
asevidencedby truemicrokernels[1, 24].

3.2 Restartability Winners

The classic replicatedInternet server configurationhas 	 in-
stancesof a server for a populationof 
 users,with eachserver
beingable to handlein excessof 
��
	 users. In suchsystems,
noderebootsresult simply in a transient �
�
	 throughputloss.
Moreover, read-onlydatabasescan be striped acrossthesein-
stancessuchthat eachnodecontributesa fixed fraction of ���
(data/query

�
queries/unittime) [4]. Independentnodereboots

or transientnodefailuresresult solely in decreaseddata/query,
while keepingoverall queries/unittime constant.Sucha design
makes“rolling rejuvenation”very affordable[3].

At major Internetportals,it is not uncommonfor newly hired
engineersto write productioncodefor thesystemafterlittle more
thanoneweekon the job. Simplicity is stressedabove all else,
and codeis often written underthe explicit assumptionthat it
will necessarilybe killed andrestartedfrequently. This affords
programmerssuchluxuriesasnever calling free() in their C
code,therebyavoidinganentireclassof perniciousbugs.

Finally, NASA’s Mars Pathfinder illustrates the value of
coarse-grainedreactive restarts.Shortly after landingon Mars,
the spacecraftidentifiedthatoneof its processesfailed to com-
pleteexecutionontime,sothecontrolsoftwaredecidedto restart
all thehardwareandsoftware[28]. Despitethefactthatthesoft-
warewasimperfect— it waslater foundthat thehanghadbeen
causedby ahard-to-reproducepriority-inversiondeadlock— the
watchdogtimersandrestartablecontrolsystemsavedthemission
andhelpedit exceedits intendedlifetime by a factorof three.

4 The Restart Scalpel: Toward Structured
RecursiveRestartability

In proposingRR, we are inspiredby the effect of introducing
ACID (atomic, consistent,isolated,durable)transactions[16]
asa building block many yearsago. Not only did transactions
greatlysimplify thedesignof datamanagementsystems,but they
alsoprovidedacleanframeworkwithin whichto reasonaboutthe
errorbehavior of suchsystems.Ourgoalis for recursiverestarta-
bility to offer thesameclassof benefitsfor systemswhereACID
semanticsarenot requiredor areexpensiveto engineer, giventhe
system’s availability or performancegoals. In particular, we ad-
dresssystemsin which weaker-than-ACID requirementscanbe
exploited for tradeoffs that improve availability or simplicity of
construction.

In thissectionwemakesomeobservationsabouttheproperties
of RR-friendlysystems,andproposeguidelinesfor how RRsub-
systemscanbeassembledinto morecomplex RR systems.The
overarchingthemeis that of designingapplicationsas loosely
coupleddistributedsystems,even if they arenot distributed in
nature.

AcceptingNo for an answer. Softwarecomponentsshouldbe
designedsuchthat they candeny servicefor any requestor call.
Then,if anunderlyingcomponentcansayNo, applicationsmust
bedesignedto takeNo for anansweranddecidehow to proceed:
giveup,wait andretry, reducefidelity, etc.Suchcomponentscan
thengracefullytoleratethetemporaryunavailability of theirpeer,
asevidencedin thecluster-baseddistributedhashtabledescribed
by Gribbleet al. [19]. Dealingwith No answersin thecallers,as
opposedto trying to copewith themin theserver, closelyfollows
theend-to-endargument[29]. Moreover, Lampsonobservesthat
sucherrorhandlingis absolutelynecessaryfor a reliablesystem
anyway [23].

Subsystemsshouldmake their interfaceguaranteessuffi-
ciently weak,sothey canoccasionallyrestartwith no ad-
vancewarning,yetnot causetheir callersto hang/crash.

Using reconstructablesoft statewith announce/listenpro-
tocols. Softstateandannounce/listenhavebeenextensively used
at thenetwork level [37, 9] aswell astheapplicationlevel [12].
Announce/listenmakesthedefault assumptionthata component
is unavailable unlessit saysotherwise;soft statecan provide
information that will carry a systemthrougha transientfailure
of the authoritative datasourcefor that state. The useof an-
nounce/listenwith soft stateallows restartsand“cold starts” to
betreatedasoneandthesame,usingthesamecodepath.More-
over, complex recoverycodeis no longerrequired,thusreducing
thepotentialfor latentbugsandspeedingup recovery.

Unfortunately, sometimessoft state systemscannot react
quickly enoughto deliver servicewithin their specifiedtime
frame. Useof soft stateimplies toleranceof somestateincon-
sistency, andsometimesthestatemayneverstabilize.For exam-

3



ple, in a soft-stateloadbalancerfor aprototypescalablenetwork
server [14], the instability manifestedas alternatingsaturation
andidlenessof workers.Thiswasdueto loadbalancingdecisions
basedon worker loaddatathatwastoo old. Mitzenmacher[26]
derivesa quantitative analyticalmodel to capturethe costsand
benefitsof usingsuchstaleinformation,andhis model’s predic-
tions coincidewith behavior observed in practice. This type of
problemcanbeaddressedby increasingrefreshfrequency, albeit
with additionalbandwidthandprocessingoverhead.

Statesharedamongsubsystemsshould be mostly soft.
The extent of soft statedependson (a) the application’s
convergenceand response-latency requirementsand (b)
the refreshfrequency supportedby the inter-component
communicationsubstrate(which is a functionnot only of
“raw” bandwidthandlatency but alsoof “goodput”).

Automatically trading precision or consistencyfor avail-
ability . Online aggregation [20], harvest/yield tradeoffs [13],
anddistributeddatabasessuchasBayou[33] areexamplesof dy-
namicor adaptivetradingof someproperty, usuallyeitherconsis-
tency or precision,for availability. Recently, TACT [36] showed
how such tradeoffs could be brought to bear on systemsem-
ploying replicationfor high availability, by using a framework
in which consistency degradationis measuredin application-
specificunits. The ability to make suchtradeoffs dynamically
andautomaticallyduringtransientfailuresmakesasystemmuch
moreamenableto RR.

Inter-component“glue” protocolsshouldallow compo-
nents to make dynamic decisions on trading consis-
tency/precisionfor availability, basedonbothapplication-
specific consistency/precision measures,and a consis-
tency/precisionutility function (e.g.,“a perfectlyconsis-
tent answeris twice asgoodasonemissingthe last two
updates,” or “a 100%preciseansweris twiceasgoodasa
90%preciseanswer”).

Structuring applications around fine grain workloads. A
primary example of fine grain workload requirementscomes
from HTTP: the Web’s architecturehaschallengedapplication
architectsto designmechanismsfor statemaintenanceandses-
sion identification,somemoreelegantthanothers.Theresultis
that the Web asa whole exhibits the desirablepropertythat in-
dividual server processescanbe quiescedrapidly, sinceHTTP
connectionsaretypically short-lived,andserversareextremely
loosely boundto their clients, given that the protocol itself is
stateless.This makesthemhighly restartableandleadsdirectly
to the simplereplicationandfailover techniquesfound in large
cluster-basedInternetservices.

“Glue” protocolsshould enforcefine grain interactions
betweensubsytems.They shouldprovidehooksfor com-
puting the costof a subsystem’s restartbasedon the ex-
pecteddurationof its currenttaskandits children’s tasks.

Using orthogonal composition axes. Independentsubsys-
temsthat do not requirean understandingof eachother’s func-
tionality are said to be mutually orthogonal. Compositions
of orthogonalsubsystemsexhibit high toleranceto component
restarts,allowing the systemas a whole to continuefunction-
ing (perhapswith reducedutility) in spiteof temporaryfailures.
There is a strong connectionbetweengood modularstructure
and the ability to exploit orthogonalmechanisms;systemsthat
exploit them well seemto go even further: their control flows
arecompletelydecoupled,influencingeachotheronly indirectly
throughexplicit messagepassing.Examplesof orthogonalmech-
anismsincludedeadlockresolutionin databases[15], software-
basedfault isolation [35], aswell asheartbeatsandwatchdogs
usedby processpeersthatmonitoreachothers’liveness[14, 7].

Split functionality along orthogonalaxes. Each corre-
spondingsubsystemshouldbe centeredaroundan inde-
pendentlocusof control,andinteractwith othersubsys-
temsviaeventspostedusinganasynchronousmechanism.

5 Research Agendaand Evaluation

After refining the above designguidelines,evaluationof a RR
researchagendawill consistof answeringat least threemajor
categoriesof questions:� What classesof applicationsare amenableto RR? What

model would capturethe behavior of theseapplicationsand
allow themto becompareddirectly?� How dowequantifytheimprovementsin availability andthe
possiblelossesin performance,consistency or otherfunction-
ality thatmayresultfrom theapplicationof RR?� Whatsoftwareinfrastructureandtoolsarenecessaryto exe-
cutetheproposedautomaticrevival/rejuvenationpolicy?

5.1 Building RR Systems

Someexisting applications,most notably Internetservices,are
alreadyincorporatinga subsetof thesetechniques(usuallyin an
ad hoc fashion)andareprimary candidatesfor systematicRR.
Similarly, many geographicallydispersedsystemscanbenefitif
they tolerateweakenedconsistency, dueto the potentiallack of
reliability in theircommunicationmedium.Wesuspectthespec-
trum of applicationsthatareamenableto RR is muchwider, but
still needsto beexplored.

Looselycoupledarchitecturesoften exhibit emergentproper-
ties that can lead to instability (e.g., noticed in Internet rout-

4



ing [11]) and investigatingthem is importantfor RR. Thereis
alsoa naturaltensionbetweenthecostof restructuringa system
for RR and the cost (in downtime) of restartingit. Fine mod-
ule granularity improvesthe system’s ability to toleratepartial
restarts,but requiresthe implementationof a larger numberof
internal,asynchronousinterfaces.Theparadigmshift requiredof
systemdeveloperscouldmakeRRtooexpensivein practiceand,
whenaffordable,may leadto buggiersoftware. In somecases
RRis simplynot feasible,suchasfor systemswith inherenttight
coupling(e.g.,real-timeclosed-loopfeedbackcontrolsystems).

Finally, thekey to wideadoptionof recursiverestartabilityare
tools thatcanaid thesoftwarearchitectin decidingwhento use
a RRstructureandhow to applytheRR guidelines.

5.2 Quantifying Availability and the Effects
of RecursiveRestartability

A major contribution of the transactionconceptwas the emer-
genceof a model, TP systems,that allowed different imple-
mentationsof datamanagementsystemsto bedirectlycompared
(e.g.,usingTPCbenchmarks[18]). Weareseekingananalogous
modelthat characterizesapplicationspossessingRR properties,
andthatcanserve in quantifyingavailability.

Availability benchmarkinghasbeenof interestonly for the
pastdecade[32, 5]. It is considerablymore difficult thanper-
formancebenchmarking,becausea faultmodelis requiredin ad-
dition to aworkload,andcertainaspects,suchassoftwareaging,
cannoteven be capturedreliably. Performancebenchmarkre-
sultsthat ignoreavailability measurements,suchas“our system
obtained300,000tpmC”, aredishonest— a fastsystemthat is
hungor crashedis simply an infinitely slow system. The con-
verseholdsfor avalability benchmarksaswell, soweseeka uni-
fiedapproachto themeasurementof RR systems.

Given an applicationamenableto RR, a model, and a suit-
ablebenchmark,wemustquantifytheimprovementin availabil-
ity andthe decreasein functionality (reducedprecision,weaker
consistency, etc.)whenspecificRR rulesareapplied.We expect
that work suchas TACT [36] and Mitzenmacher’s modelsfor
usefulnessof staleinformation[26] will provide a startingpoint
for quantitativevalidationof RR.

Wewill identifyapplicationclassesthat,comparedto theircur-
rent implementations,aremore tolerantof our guidelines(e.g.,
tradingprecisionfor availability). We will restructuretheappli-
cationsincrementally, while maintainingtheir semanticslargely
intact.Availability will beevaluatedatdifferentstages:(1) initial
application;(2) recursively restartableversionof theapplication;
(3) RR versionusingour executioninfrastructure(describedbe-
low), with revival restarts;(4) RR versionusing the execution
infrastructurewith bothrevival andrejuvenationrestarts.

5.3 RR Infrastructur eSupport

Recursively restartablesystemsrely on a genericexecutionin-
frastructure(EI) which is chargedwith instantiatingtherestarta-
bility tree mentionedin section2, monitoring eachindividual
componentand/orsubsystem,andpromptingrestartswhennec-
essary. In existing restartablesystems,theEI homologueis usu-
ally application-specificandbuilt into thesystemitself.

The execution infrastructurerelies on a combinationof pe-
riodic application-specificprobesand end-to-endchecks(such
as verifying the responseto a well-known query) to determine
whethera componentis makingprogressor not. In mostcases,
application-specificprobesareimplementedby thecomponents
themselvesvia callbacks.WhentheEI detectsananomaly, it ad-
visesthe faulty componentthat it shouldcleanup any pending
statebecauseit is aboutto berestartedby its immediateancestor
in the restartabilitytree. An analogywould be UNIX daemons
that understandthe “kill -TERM; sleep 5; kill -9 ”
idiom. If restartingdoesnot eliminatetheanomaly, a restartat a
higherlevel of thehierarchyis attempted,similar to thereturnup
a recursivecall structure.

Note how the availability problemitself becomesrecursive:
we now needa highly availableinfrastructurethat caresfor the
RR system.Medusa[6], our EI prototype,is functionallymuch
simplerthanmostapplications,makingit possibleto designand
implementit with care. Medusais built out of simple, highly
restartablesegmentsthat run on different hosts,usemulticast
heartbeatsto keeptrackof eachotherandtheir activity, andself-
reinstantiateto replacedeadsegments.

6 Conclusion

In thispaperwetooktheview thattransientfailureswill continue
plaguingthesoftwareinfrastructureswe dependon,andthusre-
bootsarehereto stay. We proposedturning the rebootfrom a
demonicconceptinto a reliablepartnerin the fight againstsys-
tem downtime,giventhat it is a time-tested,effective technique
for circumventingHeisenbugs.

Wedefinedrecursively restartable(RR)systemsasbeingthose
systemsthat toleratesuccessive restartsat multiple levels. Such
systemspossessa numberof valuablepropertiesthat by them-
selves improve availability. For instance,a RR system’s fine
granularity permits partial restartsto be used as a form of
boundedhealing,reducingthe overall time-to-repair, andhence
increasingavailability. Ontopof thesedesirableintrinsicproper-
ties,wecanemploy anautomated,recursivepolicy of component
revival/rejuvenationto furtherreducedowntime.

Building RR systemsin a systematicway requiresa frame-
work consistingof well-understooddesignrules. A first attempt
at formulating sucha framework was presentedhere,advocat-
ing theparadigmof building applicationsasdistributedsystems,
evenif they arenot distributedin nature.We setforth a research
agendaaimedat validatingtheseproposalsandverifying thatre-

5



cursive restartabilitycanbe an effective supplementto existing
high availability mechanisms.With recursive restartability, we
hopeto adda usefulitem to everysystemarchitect’s toolbox.

7 Acknowledgments

We thankPeterChen,David Cheriton,Jim Gray, Steve Gribble,
Butler Lampson,David Lowell, Udi Manber, Dejan Milojicic,
Milyn Moy, andStanford’s MosquitonetandSWIG groupsfor
helpful andstimulatingcommentson theideaspresentedhere.

References

[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F.
R. A. Tevanian,andM. Young. Mach: A new kernel foundation
for UNIX development. In Proceedingsof the USENIXSummer
Conference, pages93–113,1986.

[2] E. Adams. Optimizingpreventative serviceof softwareproducts.
IBM J. Res.Dev., 28(1):2–14,1984.

[3] E. Brewer. Personalcommunication.2000.

[4] E. Brewer. Lessonsfrom giant-scaleservices(draft). Submitted
for publication,2001.

[5] A. Brown andD. A. Patterson.Towardsavailability benchmarks:
A casestudyof softwareRAID systems. In Proceedingsof the
USENIXAnnualTechnicalConference, SanDiego,CA, June2000.

[6] G. Candea. Medusa:A platform for highly availableexecution.
CS244C(DistributedSystems)courseproject,StanfordUniversity,
http://stanford.edu/˜candea/papers/medu sa ,
June2000.

[7] Y. ChawatheandE. A. Brewer. Systemsupportfor scalableand
fault tolerantinternetservice.In IFIP InternationalConferenceon
Distributed SystemsPlatformsand OpenDistributed Processing
(Middleware ’98), Lake District, UK, Sep1998.

[8] T. C.Chou.Beyondfault tolerance.IEEEComputer, 30(4):31–36,
1997.

[9] S. Deering,D. Estrin, D. Farinacci,V. Jacobson,C. Liu, L. Wei,
P. Sharma,andA. Helmy. Protocolindependentmulticast(PIM),
sparsemodeprotocol:Specification,March1996. InternetDraft.

[10] A. DiGiorgio. Thesmartship is not enough.Naval InstitutePro-
ceedings, 124(6),June1998.

[11] S.Floyd andV. Jacobson.Thesynchronizationof periodicrouting
messages.IEEE/ACMTransactionsonNetworking, 2(2):122–136,
Apr. 1994.

[12] S.Floyd, V. Jacobson,C. Liu, andS.McCanne.A ReliableMulti-
castFramework for Light-WeightSessionsandApplicationLevel
Framing. In ACM SIGCOMM’95, pages342–356,Boston,MA,
Aug 1995.

[13] A. Fox andE.A. Brewer. ACID confrontsits discontents:Harvest,
yield, andscalabletolerantsystems.In SeventhWorkshopon Hot
Topics In Operating Systems(HotOS-VII), Rio Rico, AZ, March
1999.

[14] A. Fox,S.D. Gribble,Y. Chawathe,E. A. Brewer, andP. Gauthier.
Cluster-BasedScalableNetwork Services. In Proceedingsof the
16th ACM Symposiumon Operating SystemsPrinciples (SOSP-
16), St.-Malo,France,October1997.

[15] J.Gray. Noteson databaseoperatingsystems.In R. Bayer, R. M.
Graham,J.H. Saltzer, andG. Seegmüller, editors,Operating Sys-
tems,An AdvancedCourse, volume60, pages393–481.Springer,
1978.

[16] J.Gray. Thetransactionconcept:Virtuesandlimitations. In Pro-
ceedingsof VLDB, Cannes,France,September1981.

[17] J. Gray. Why do computersstop and what can be doneabout
it? In Proc.Symposiumon Reliability in DistributedSoftware and
DatabaseSystems, pages3–12,1986.

[18] J.Gray. TheBenchmarkHandbookfor DatabaseandTransaction
ProcessingSystems. MorganKaufman,2 edition,1993.

[19] S.D. Gribble,E. A. Brewer, J.M. Hellerstein,andD. Culler. Scal-
able,distributeddatastructuresfor internetserviceconstruction.
In Proc.Fourth SymposiumonOperating SystemsDesignandIm-
plementation(OSDI2000), SanDiego,CA, October2000.

[20] J. M. Hellerstein,P. J. Haas,and H. J. Wang. Online aggrega-
tion. In ACM–SIGMODInternationalConferenceonManagement
of Data, Tucson,AZ, May 1997.

[21] Y. Huang,C.M. R.Kintala,N. Kolettis,andN. D. Fulton.Software
rejuvenation:Analysis,moduleandapplications.In International
Symposiumon Fault-TolerantComputing, pages381–390,1995.

[22] InternationalBusinessMachines.IBM directorsoftwarerejuvena-
tion. White paper, Jan.2001.

[23] B. W. Lampson.Hints for computersystemsdesign.ACM Oper-
ating SystemsReview, 15(5):33–48,1983.

[24] J. Liedtke. Toward real microkernels. Communicationsof the
ACM, 39(9):70–77,1996.

[25] D. Milojicic, A. Messer, J. Shau,G. Fu, andA. Munoz. Increas-
ing relevanceof memoryhardwareerrors.a casefor recoverable
programmingmodels.In ACM SIGOPSEuropeanWorkshop”Be-
yondthePC: New Challengesfor theOperatingSystem”, Kolding,
Denmark,Sept.2000.

[26] M. Mitzenmacher. How usefulis old information? In Principles
of DistributedComputing(PODC)97, pages83–91,1997.

[27] B. Murphy and N. Davies. Systemreliability and availability
driversof Tru64UNIX. In Proceedingsof the29th International
Symposiumon Fault-Tolerant Computing, Madison,WI, February
1999.IEEE ComputerSociety. Tutorial.

[28] G. Reeves. What really happenedon Mars? RISKS-19.49,Jan.
1998.

[29] J.Saltzer, D. Reed,andD. Clark. End-to-endargumentsin system
design. ACM Transactionson ComputerSystems, 2(4):277–288,
Nov. 1984.

[30] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,andB. Lyon.
Design and implementationof the Sun network filesystem. In
Proceedingsof theUSENIXSummerConference, pages119–130,
Portland,OR,1985.

[31] D. Scott. Making smartinvestmentsto reduceunplanneddown-
time. Tactical GuidelinesResearchNote TG-07-4033,Gartner
Group,Stamford,CT, 1999.

[32] D. P. Siewiorek, J. J. Hudak,B.-H. Suh,andZ. Segall. Develop-
mentof a benchmarkto measuresystemrobustness.In Proceed-
ingsof theInternationalSymposiumonFault-TolerantComputing,
pages88–97,1993.

[33] D. B. Terry, A. J. Demers,K. Petersen,M. J. Spreitzer, M. M.
Theimer, andB. B. Welch. Sessionguaranteesfor weaklyconsis-
tent replicateddata. In Proceedingsof the InternationalConfer-
enceonParallel andDistributedInformationSystems, pages140–
149,Austin,TX, Sept.1994.

[34] U.S.GeneralAccountingOffice. Patriotmissiledefense:Software
problemled to systemfailureatDhahran,SaudiArabia.Technical
ReportGAO/IMTEC-92-26,1992.

[35] R. Wahbe,S. Lucco,T. E. Anderson,andS. L. Graham.Efficient
Software-BasedFault Isolation. In Proceedingsof the 14thACM
Symposiumon Operating SystemsPrinciples(SOSP-14), 1993.

[36] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicatedservices. In Proceedingsof the
FourthSymposiumonOperatingSystemsDesignandImplementa-
tion, Oct.2000.

[37] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New ResourceReservation Protocol. IEEE Network,
7(5),Sept.1993.

6


