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Abstract
Motivated by the lack of rapid improvement in the availability of Internet server systems,
we introduce a new philosophy for designing highly-available systems that better reflects
the realities of the Internet service environment. Our approach, denoted repair-centric
system design, is based on the belief that failures are inevitable in complex, human-admin-
istered systems, and thus we focus on detecting and repairing failures quickly and effec-
tively, rather than just trying to avoid them. Our proposal is unique in that it tackles the
human aspects of availability along with the traditional system aspects. We enumerate a
set of design techniques for building repair-centric systems, outline a plan for implement-
ing these techniques in an existing cluster email service application, and describe how we
intend to quantitatively evaluate the availability gains achieved by repair-centric design.

1 Introduction and Motivation
Electronic information storage, processing, and dissemination have become an integral part of life in mod-
ern society. Businesses are built around the on-line delivery of information and content, and consumers are
rapidly embracing the benefits of electronic communication and commerce. We have reached the point
where many of our day-to-day activities—from e-mail communication to online banking to entertain-
ment—depend on the proper functioning of a vast infrastructure of complex, large-scale computer systems.

The rapid expansion of this “Internet society” has put enormous pressures on the architects and opera-
tors of the computational infrastructure. Today’s server systems must deliver the availability needed to
meet user expectations for timely service that is always on, 24 hours a day, 7 days a week. When service
availability falls short, the economic costs of lost business and customers are severe: one report estimates
that typical per-hour outage costs range from the hundreds of thousands of dollars (for online retailers and
airlines) to millions of dollars (for brokerages) [4] [56]. These economic costs come in addition to negative
fallout from the publicity that accompanies outages at a high-profile services (such as the famous EBay
outage of 1999 [41]). In the words of Kal Raman, CIO of drugstore.com, “availability is as important as
breathing in and out [is] to human beings” [15].

With such an importance placed on availability, and such high penalties for system unavailability, one
would expect to see rapid progress by industry and academia in addressing the availability challenge. Sur-
prisingly, despite high-profile advertising by all major vendors purporting to offer high-availability solu-
tions, and despite entire communities of researchers focusing on topics such as reliability, maintainability,
and fault tolerance, outages and failures remain frequent. In a survey by InternetWeek, 65% of IT manag-
ers reported that their web sites suffered an outage at least once in the previous 6-month period; 25%
reported three or more outages during that period [56].

Why has progress been so slow? A review of the literature and practice in the reliability, maintainabil-
ity, and fault-tolerance communities reveals the problem: the designers of today’s server systems operate
under a set of perceptions that do not accurately reflect the realities of the modern Internet environment.
Specifically, systems are commonly built and evaluated under the following three assumptions:

1. Failure rates of hardware and software components are low and improving;
2. Systems can be modeled for reliability analysis and failure modes can be predicted;
3. Humans do not make mistakes during maintenance.
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Taken together, these assumptions result in a mindset that emphasizes failure avoidance as the way to
improve availability. Our claim, however, is that the above assumptions are based on fundamentally incor-
rect perceptions of today’s environment, and thus the mindset of availability-through-failure-avoidance is
built on a weak foundation as well.

In response, we propose a new set of assumptions, ones that we believe are supported by practical
experience with modern server systems:

1. Hardware and software will fail despite technological efforts to reduce failure rates;
2. Models of modern systems are inherently incomplete; failure modes cannot be predicted a priori;
3. Humans are human: fallible, inquisitive, experimental, biased, stubborn.

In contrast to the original set of assumptions, these result in a philosophy that emphasizes the importance
of failure detection, recovery, and human-aware repair procedures. If failures are inevitable in today’s
complex, human-maintained server systems, then failure avoidance is inherently a losing battle, and only
through improving detection and repair will we be able to make further gains in availability.

We will conduct a detailed analysis of these assumptions below in Section 1.2, presenting evidence
that reveals the fallacies in today’s assumptions and motivates our new set of assumptions. First, however,
we will lay out the hypothesis of this proposal: that building systems around the philosophy of our new
assumptions will result in a significant improvement in availability.

1.1 Hypothesis and Contributions
“If a problem has no solution, it may not be a problem, but a fact, not to be solved, but to
be coped with over time” — Shimon Peres [51]

We claim that the slow progress toward significant improvements in availability is a result of focusing too
much attention on avoiding failures rather than repairing them, on trying to increase mean-time-to-failure
(MTTF) while ignoring mean-time-to-repair (MTTR)1. Following the guidelines of our new assumptions
and their analysis below, we can deduce that failures will always occur despite the best efforts of system
design and modeling. Drawing on the wisdom in the quotation by Shimon Peres that starts this section, we
thus conclude that further significant gains in availability can only come once failures are accepted as a
normal, unavoidable fact of system operation, and systems are designed with fast and effective repair
mechanisms that mitigate the long-term impact of those failures. We call this philosophy repair-centric
design.

We believe that repair-centric design can achieve and demonstrate significant improvements in avail-
ability by producing systems that:

1. expect faults to occur, and dedicate system resources to proactively detecting them
2. do not attempt to mask faults, but rather expose them to higher levels of the system so that they can

be handled end-to-end and so that applications can participate in their repair
3. provide mechanisms that help diagnose new, unexpected failure modes and symptoms
4. continuously verify proper operation of repair and maintenance mechanisms
5. take into account human behavior by providing maintenance facilities that compensate for human

error, allow for experimentation, and promote training of the administrator’s mental system model.
After presenting evidence to motivate the new assumptions from which these rules are derived, the remain-
der of this proposal will describe the detailed mechanisms that we intend to use to implement, demonstrate,
and evaluate these availability-enhancing techniques. Should our work be successful, we believe that we

1. Recall that availability is traditionally defined as the ratio of MTTF to MTTF+MTTR, that is, availability =
MTTF/(MTTF+MTTR).
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will have made the following contributions to the state-of-the-art in system availability research:

1. a new model for thinking about high availability based on a more accurate perception of the modern
computing environment, with a focus on coping with failure rather than avoiding it

2. an elucidation of system design techniques that reflect this new model
3. an evaluation methodology to quantitatively demonstrate the improvements in availability enabled

by this new model and its associated design techniques
4. a characterization of common system failure modes and maintainability tasks, used to drive this

evaluation methodology
5. a prototype system implementation that demonstrates a quantitatively-measurable increase in avail-

ability in the face of realistic failures and maintenance procedures.

1.2 Analysis of Assumptions
We now turn to a detailed analysis of the assumptions underlying our new repair-centric design approach,
debunking the assumptions underlying existing system design as we go. 

1.2.1 Failure rates of hardware and software components
The first assumption apparent in current system designs is that the failure rates of hardware and software
components are low, and still decreasing. While this may be true for many hardware components, it does
not mean that failure rates will approach zero any time soon. For example, while the mean-time-to-failure
ratings of disk drives have been rising precipitously in the past several years (and are often in the range of
100 or more years), disks are still designed with an 5-7 year expected lifetime of their mechanical compo-
nents, a quantity not factored into MTTF [13]. Furthermore, even solid-state components with very low
individual failure rates can show significant failure behavior when enough of them are used in the same
system. For example, the production cluster run by the Google search engine experiences a node failure
rate of 2-3% per year, with one-third of those failures attributable to the failure of a DRAM or memory bus
[25]. The rate of failures due to memory may seem almost negligible—1% per year—except that Google’s
cluster has 6000+ nodes, and that 1% failure rate translates to more than one failure per week due to a
solid-state component. The fact that the motherboards used in Google’s nodes do not support ECC (a
mechanism that could mitigate a large portion of those memory failures) shows how system designers turn
a blind eye to failures that they incorrectly assume to be negligible.

When we turn our attention to software components, the assumption of low and decreasing failure
rates looks even worse. While it is frequently acknowledged that all software has bugs that can induce
unavailability, it is a common perception that these bugs can and will be eradicated over time with
improved software design methodologies, debugging, and testing [33]. Evidence supporting this percep-
tion abounds; the ultimate example is the software used to control the Space Shuttle, which is essentially
bug-free due to its slow development cycle and rigid development methodology [16]. However, this evi-
dence relies on an assumption of stability: that software and development tools are allowed to mature, pro-
viding time for improved design and testing. This assumption is not true for most software deployed in
today’s Internet services world, where “there are so many people in the gold rush to get their applications
online first,” according to a division head of Sun’s consulting wing. Major internet portals are deploying
code written by gumshoe engineers with little more than a week of job experience [8]. In the words of
Debra Chrapraty, former CIO of E*Trade, a major online brokerage service, “We used to have six months
of development on a product and three months of testing. We don’t live that way any more. . . . In Internet
time, people get sloppy” [41].

In summary, blind adherence to this first assumption has resulted in system designs that minimize the
importance of failures as an expected part of system operation, relegating failure detection, recovery, and
repair to secondary importance, and often resulting in failure-handling mechanisms that are missing, inef-
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fective, or inelegantly bolted-on as an afterthought. This has a direct effect on availability, as effective fail-
ure handling and fast repair are crucial factors in maintaining availability. Furthermore, even non-failed
hardware and software components are frequently replaced and upgraded to newer and better versions;
these upgrade procedures often have the same impact on a system as a failure of the concerned component.
Our repair-centric design assumptions make it clear that hardware and software failures and upgrades will
inevitably happen, and that therefore systems must be designed to tolerate and repair them.

1.2.2 Modeling of systems and failures
The usual approach to analyzing and improving system reliability is to construct a model of the system
using one of an overflowing toolbox of modeling techniques—Markov chains, reliability block diagrams,
fault trees, Petri nets, Bayesian belief networks, and so on [20]. These models are then used to predict the
impact and propagation of faults through the system, allowing system reliability to be evaluated and
improved. Although the literature of the fault-tolerance and reliability communities is saturated with
research related to the generation and use of these models, it all makes one fundamental assumption: that
the system structure, component failure modes, and component interactions are well-enough known that
they can be specified in the form of a model.

In practice, however, large server systems are constructed from a combination of off-the-shelf and
custom hardware and software components. To the designer, much of the system therefore appears as
opaque black boxes with unquantifiable interactions, making the modeling task difficult or impossible.
Furthermore, server systems are deployed and changed quickly, without the long observation periods
needed to empirically measure component failure modes and distributions. Often, the assumption cannot
even be made that system components will fail-fast; nearly all models require this assumption, whereas
practical experience reveals it to rarely be true [57]. And as we have seen above, the false perception of
increasing hardware and software reliability makes direct estimation of failure modes highly suspect.

Moreover, large servers are complex, tightly-coupled systems that perform a transformational func-
tion, consuming user requests, transforming databases, and synthesizing new results, all under the guid-
ance of human maintainers. In the system taxonomy defined by sociologist and risk investigator Charles
Perrow, these are exactly the kind of system that is highly susceptible to unexpected interactions [48]. Per-
row’s theories predict that such systems are by their very nature subject to “normal accidents”: accidents
(outages or failures in the case of servers) that arise from multiple and unexpected hidden interactions of
smaller failures and the recovery systems designed to handle those failures. When viewed individually,
normal accidents appear as very unlikely, rare situations arising from bizarre and improbable combinations
of factors. Perrow’s claim is that normal accidents are inevitable and unpredictable, despite the best
attempts to model and compensate for failures.

Thus, adherence to this second assumption results in system designs where unmodeled failures are not
expected, despite Perrow’s arguments that they are likely to occur; as a result, provisions are rarely made
for diagnosing and repairing such unexpected failures, which allows them to have a significant availability
impact when they do occur. The second of our new set of repair-centric design assumptions makes Per-
row’s theories explicit: by assuming that we cannot predict failure modes a priori, we increase the chance
that system designs can tolerate unexpected “normal accidents”.

1.2.3 Human maintenance behavior
All large systems rely on human beings for maintenance and repair. At the very least, humans must per-
form the physical actions of repairing, replacing, and expanding hardware. Most systems require human
intervention for software configuration and upgrading, and many require human intervention in the perfor-
mance tuning loop. The task of diagnosing and fixing failures and other aberrant behavior is also a stan-
dard task of the human administrator.

One of the most pervasive assumptions underpinning the design of modern server systems is that
humans do not make mistakes when performing these functions. This assumption is rarely stated explicitly,
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but it can be inferred from several factors. First, the typical maintenance interface for a system provides no
margin for error: if the wrong command is executed or the wrong piece of hardware is removed, there is
often no recourse, and results can be catastrophic. Systems may provide guides for the human (such as
lights on hardware and confirmation dialogs in software), but it is well-known in psychology that humans
often construct a (frequently incorrect) mental model of the system, and that they will often ignore warn-
ings and guides that conflict with their mental model [58]. Furthermore, the typical maintenance interface
does not provide a way for human administrators to calibrate their mental models, for example by experi-
menting with different potential solutions to a problem—there is no easy way to try and back-out a partic-
ular solution.

If we turn to the standard literature, we find that practically all of the reliability modeling approaches
treat human-performed repair operations as opaque procedures with a certain time distribution, but with no
probability of causing further faults. This is a fundamental problem with characterizing repair simply by a
time distribution or mean-time-to-repair (MTTR); the human may be modeled as a source of initial system
faults, but repair itself is considered to be perfect. 

Unfortunately, the assumption of human perfection is blatantly untrue. Psychologists tell us that
human error rates are unquestionably non-zero, and can rise to 10% to 100% in stressful situations (as one
might expect during off-hours emergency system maintenance) [49]. Humans make mistakes even in sim-
ple tasks such as digit recognition [30]; we can hardly expect them to do better when dealing with
unwieldy maintenance interfaces to complex server systems. Experimental data collected during simple
human repair experiments confirms this. Figure 1 reports on a study in which 5 trained subjects were asked
to perform a simple maintenance task: replacing a failed disk in a software RAID volume on three different
platforms [5]. As can be seen from the graph, errors were made on all platforms, and on two of the three,
error rates did not significantly decrease with additional system familiarity.

Anecdotal reports paint an even bleaker picture. Of particular concern is that the problem of human
operator error has been well known for a long time, yet there does not seem to have been any significant
reduction in its impact over time. Data from the late 1970s reveals that operator error accounted for 50-
70% of failures in electronic systems, 20-53% of missile system failures, and 60-70% of aircraft failures
[11]. In the mid-1980s, a study of failures in fault-tolerant Tandem systems revealed that 42% were due to
system administration errors—again human error [21]. Data collected on the causes of failures in VAX sys-
tems reveals that in 1993, human operators were responsible for more than 50% of failures, and that the
error rate was rising as hardware and software failures become less important [45]. And more recently, in
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Figure 1: User errors made during simple maintenance task. The graph plots the number of errors made by five
human subjects attempting to repair failed disks on each of three software RAID systems. On each iteration of the trial,
each subject was required to repair one faulty disk on each system; plotted error counts are aggregated across the subjects.
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1999, a Vice President at Oracle was reported as claiming that one “can have the best technology on the
planet, but half the failures we analyze are human error” [41]. 

From the collective picture painted by all of this data, it is hard to deny that human-induced failures
have remained a major and unaddressed problem in system availability. This motivates our third and final
repair-centric design assumption, that humans are, in effect, human: prone to errors, inquisitive and exper-
imental in their problem-solving approaches, and often stubborn in reconciling mental models with actual
system behavior.

2 Proposed Techniques for Repair-centric System Design
In this section, we lay out our proposals for system design techniques that reflect the philosophy intro-
duced in Section 1. Our discussion will remain at a high level in this section; proposed implementation
details will be discussed below, in Section 3. After constraining the problem somewhat by making a few
assumptions, we will consider each of the design points listed in Section 1.1 in turn.

2.1 System Assumptions
We begin with the assumption that our target system is a service: a single-function server system designed
to supply a service to remote users that access the system over a network. This assumption greatly simpli-
fies our task by removing the need to support arbitrary applications and user interactions with the system.
Users are constrained to a fixed, external interface, and as long as we maintain that interface, we are free to
construct the internals of the system in whatever special-purpose manner we desire.

We further assume that the service is deployed on a distributed cluster hardware architecture. Cluster
designs are mandatory to meet the demands of scalability and incremental growth required by today’s net-
work services, and they also offer several properties that we will leverage to improve repair. In particular,
clusters can easily be partitioned into multiple disjoint, smaller clusters to provide fault isolation, and their
shared-nothing design allows for tolerance of partial failure.

Finally, we assume that the software implementing the service is constructed in a modular fashion,
with well-defined components and interfaces between them. This assumption will prove critical in our
fault detection and diagnosis techniques, as it allows for interface boundaries where testing and monitoring
can be inserted. We assume modules can be distributed across the cluster. Many novel service infrastruc-
tures are being designed with modularity [18] [46], and even traditional multi-tier architectures can be seen
as modular on a coarse granularity.

2.2 Design Techniques

2.2.1 Expecting failures
The first design point enumerated in Section 1.1 states that repair-centric systems should expect failures to
occur, and dedicate system resources to proactively detecting them. In essence, we want to detect latent
faults before they have the chance to manifest as failures, and likewise reduce the latency for detecting any
failures that do slip through and manifest themselves.

One way to do this is to continuously probe all hardware and software modules of the system to verify
their correct operation. We propose to do this by integrating online, proactive verification at all module
interfaces in the system. Unlike the limited heartbeat-based testing typically used in fault-tolerant systems
to verify module behavior, we propose to use injection of realistic test inputs into the system’s regular
interfaces. Such testing offers the ability to verify that a module is performing acceptably and delivering
correct behavior at a semantic level, as opposed to simply verifying that it is reachable by the communica-
tions layer. Furthermore, by extending our testing to encompass both normal and non-destructive errone-
ous inputs, we can verify the correct behavior of both common-case and error-handling code paths.
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In addition to this direct injection of test inputs, every module should, where possible, perform sanity
checks on data received from other modules. In many cases, it is easier to check data against a specification
than to transform it to match that specification; the canonical example is checking the order of purportedly-
sorted data (vs. actually sorting it). More relevant examples might include checking email message headers
for consistency with their associated bodies, or verifying the integrity of pointers in a data structure. We do
not ask that modules be able to repair discovered inconsistencies, merely that they detect and report them.
Where checking data based on a natural structure is impossible, checksums should be used as an ancillary
method of verifying integrity [27].

So far we have only discussed verification at the module granularity. It is important as well to provide
coarser-granularity, system-wide failure discovery by verifying consistency across modules. Of particular
interest is a technique suggested by fault-detection strategies used in reliability-conscious industrial plant
design [34]. The idea is to develop and use global “conservation laws” to ensure that data traveling through
the system is not lost, delayed, corrupted, or fabricated, much as laws of fluid flow and energy conserva-
tion can be used to verify the integrity of plumbing and electrical systems. An example conservation law
for an email service might be that the flux of incoming email messages should match the flux of messages
and headers written to disk. We believe that conservation laws might also be extended to capture perfor-
mance characteristics as well, allowing them to detect overflowing queues, wedged worker modules, and
other bottlenecks.

Note that our online verification proposals offer unique fault-detection abilities beyond traditional off-
line development-cycle testing, as they find the system in a production configuration under the system’s
actual workload. This allowing testing in realistic operational states that may never occur in a development
lab, and may also provide a better ability to detect the effects of the nondeterministic Heisenbugs that
escape traditional debugging procedures.

2.2.2 Exposing faults
Our second design point emphasizes that faults should be exposed, not masked. This is in some sense a
religious argument. Nearly all extant reliable or fault-tolerant system designs attempt to mask faults to the
greatest extent possible; the goal is to provide the illusion of perfectly-functioning hardware or software to
higher layers of the system. Were it possible to completely mask faults, this would be a justified philoso-
phy. But in practice, while faults can be masked from a functionality point of view, they cannot be com-
pletely masked in terms of performance. Moreover, many Internet service applications can tolerate some
failures, and would rather operate with high performance on some non-failed subset of their data than suf-
fer performance degradations or resource depletion due to fault-masking techniques [17].

Thus we propose that all modules in the system have a mechanism for reporting faults and “health”
information to all of the other modules with which they communicate. This mechanism must be asynchro-
nous so that faults can be reported immediately, but should also support polling for routine “checkups”.
Note that we are not advocating the elimination of fault-handling mechanisms such as automatic redun-
dancy; instead, we are merely asking that the system keep higher levels informed of the existence of faults
and repair actions, so that those higher levels can participate in the repairs. Again drawing on the example
of an email server, the email application that receives an I/O failure response may want to distinguish a soft
error while reading a MIME attachment from a hard error that scrambled the superblock of the email store;
in the first case, recovery is trivial by simply returning the partial message to the user, while in the second
case it would be prudent to switch to a backup copy of the repository and initiate a repair procedure.

2.2.3 Aiding diagnosis
The exposure of fault information discussed in the previous suggestion has another benefit besides offering
applications a way to make tradeoffs upon faults. Fault and status information can be propagated up to a
human being’s monitoring station, providing the human administrator with detailed information that can be
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used to troubleshoot a misbehaving system. We thus arrive at our third design point: that repair-centric sys-
tems should help in the difficult task of diagnosing new and unexpected failures.

Of course, the problem with simply propagating all status information to a human is that the data is
overwhelming. Furthermore, as failures tend to propagate through systems, the human is likely to be over-
whelmed with specious alarms when a failure occurs. The challenge is in root-cause analysis: identifying
the subset of components truly at fault. One promising approach to root-cause analysis is a technique
known as dependency analysis, in which a model of dependencies between system modules is used to
identify possible culprits of observed symptoms while eliminating those modules that could not possibly
be the root cause [6] [31]. Unfortunately, one of our main tenets of repair-centric systems is that a priori
models (like the required dependency model) are not knowable for complex, dynamic systems.

The solution again lies in module interfaces. As a request is processed by the system, work is done on
its behalf by the various system modules. We propose to associate a piece of state, a ticket, with each
request. As that request filters through the system (possibly sitting in queues, possibly being merged with
other requests via caching), its ticket is stamped by the each module it encounters. The stamp should
include what resources (disks, networks, nodes, etc.) were used to fulfill the request. When the request is
complete, the stamps on its ticket provide direct evidence of the relevant dependency chain; a request that
fails or performs poorly returns with exactly the evidence needed to identify possible culprit modules. In
some sense, as a diagnostic aid this technique is similar to log analysis, but it provides automatic correla-
tion of logs across modules and resources, making the human diagnostician’s job easier.

2.2.4 Continuously-verified repair and maintenance mechanisms
As repair-centric systems rely on repair and maintenance to handle failures and maintain availability, we
expect that the mechanisms provided for these tasks should be efficient, reliable and trustworthy. Unfortu-
nately, it is well-known that repair and maintenance code is some of the hardest code to write and test, and
is therefore some of the most buggy. For example, Perrow’s studies of several large industrial systems
reveals that ineffective or broken warning systems, safety systems, and control systems are a major contri-
bution to system accidents [48]. Furthermore, it is not unheard of to find shipping software products with
significant bugs in their recovery code; an illustrative example is the software RAID-5 driver shipped with
Solaris/x86, which improperly handles a double-disk-failure by returning fabricated garbage data in
response to I/O requests [7]. Often times the bugs are in performance, not functionality; again choosing an
example from software RAID, the Linux software RAID-5 driver puts such low priority on disk recon-
struction that repair can take hours even with small volumes and moderate user loads [7].

Repair-centric systems must address the problem of buggy and ineffective maintenance code. The
only way to do this is to exercise the maintenance code to expose bugs and allow them to be corrected
before they are needed in an emergency. This must be done frequently and in the context of a deployed sys-
tem in order to ensure that system reconfiguration, software aging, and varying system workload do not
alter the effectiveness of maintenance mechanisms. 

Note that this conceptually simple idea presents several practical implementation challenges that must
be solved, including the selection of a fault workload to trigger the maintenance code, verification of the
effectiveness of the maintenance mechanisms, and most importantly, containment of the tests and the
injected faults so that they do not affect the production behavior of the system. We will discuss these prob-
lems and possible solutions in more detail when we consider our implementation of this technique, in Sec-
tion 3.2.2.

2.2.5 Human-centric maintenance
Our last design point is that repair-centric systems must take human characteristics into account in the
design of their administration and maintenance interfaces. We believe that there are two powerful tech-
niques that could vastly improve resilience to human error, thereby reducing human-initiated failures and
improving the reliability of repair and maintenance procedures, including hardware and software upgrades.
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The first technique is conceptually simple: provide a way for any maintenance action performed on
the system to be undone. Undo is a concept that is ubiquitous in computer systems, with the notable excep-
tion of system maintenance. Every word processor, spreadsheet, or graphics package worth its salt recog-
nizes that humans try things out, change their minds, and make mistakes; they all provide an undo
function. Yet, incomprehensibly, system designers seem to assume that system administrators are perfect,
and thus fail to provide such functionality. An administrator who accidently replaces the wrong disk after a
failure should be able to reinsert it without loss of data, but most RAID systems do not allow this [5]. It
should be possible to back out a software upgrade gone bad with a single command, without loss of user
data. An experiment in performance tuning should be instantly reversible in the case where it hurts more
than it helps. The list goes on and on. Scenarios like these are common in practice; many major site out-
ages are caused by errors made during upgrades or maintenance, errors not easily corrected because of the
lack of undo [41].

Of course, implementing fully-general undo for all maintenance tasks is not an easy goal. In many
cases, the resource requirements needed to provide undo may be prohibitive. But we believe that, for con-
strained problems such as the environment of a specific service, and for certain key maintenance tasks,
undo is feasible, if expensive. A major contribution of this work will be discovering the extent to which
undo can be provided for system maintenance.

Our second technique for reducing human error is to improve operator training. One of the biggest
causes of human error during maintenance is unfamiliarity with the system; this is hardly surprising, since
maintenance tasks (especially failure repair) are uncommon and often unique. Psychologists have shown
that humans construct mental models of the operation of systems, then use those models to perform prob-
lem diagnosis and to predict the effects of potential actions; these models are empirical and can only be
calibrated by experience with the system and its maintenance procedures [12] [30] [38] [58]. Practical
experience bears out these theories: in one example, the current “uptime champion” of Tandem system
installations is one in which operators are regularly trained on a separate pilot system before being allowed
to interact with the production system [2]. The widespread use of simulators for training aircraft pilots in
emergency-handling maneuvers is another example of where operator training has proven effective in
reducing accidents and catastrophes.

We propose to build enforced training into the standard operating procedures of repair-centric sys-
tems. Repair-centric systems should regularly require their operators to carry out repair and maintenance
procedures, using fault injection to generate scenarios requiring maintenance. Such enforced “fire-drills”
train new operators and guarantee that veteran ones stay on their toes, and more importantly provide the
opportunity for operators to gain experience with the system’s failure modes and maintenance procedures.
By combining both targeted and random fault injection, they allow both training on known procedures as
well as providing experience with diagnosing new and unseen problems. They further allow the system to
evaluate its operators—in some sense, this technique is an extension of the continuous verification of Sec-
tion 2.2.4 to include the human operator as a repair mechanism.

Of course, like the tests of automated recovery mechanisms described in Section 2.2.4, these operator
training procedures must take place in a controlled environment that protects the rest of the system from
the simulated failures and operator maintenance actions. Finally, it remains to be seen whether operators
will tolerate such enforced training, especially if it is revealed as such. Open research issues remain as to
the most effective frequency of such training sessions, and whether they should be announced to the oper-
ator.

2.2.6 Summary
Taken together, the five techniques described in the previous sections provide the foundation for increased
availability via a focus on repair and an attention to human behavior. The verification approaches of Sec-
tion 2.2.1 will help detect impending hardware failure, reproducible bugs in little-used error-handling
code, and lurking Heisenbugs, allowing them to be repaired more quickly. When problems slip by the test-
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ing infrastructure (most likely due to the unexpected interactions of a “normal accident”), the diagnosis
techniques of Section 2.2.3 will help the human diagnostician find them faster, the reporting techniques of
Section 2.2.2 will help the application bypass them, and the recovery-testing techniques of Section 2.2.4
will provide confidence that any automatic recovery mechanisms work properly. When the system requires
human maintenance like upgrades, expansion, or fault repair, the proactive training techniques of Section
2.2.5 will help ensure that further errors are not made due to unfamiliarity with the system. At the same
time, the undo mechanism of Section 2.2.5 will allow for experimentation with repair techniques while
providing a backstop in case the upgrade or repair fails, or if catastrophic maintenance errors are made.

3 Proposed Implementation Plan
In the previous sections we have laid out a vision of a radical and highly ambitious approach to improving
system availability that turns today’s assumptions on their ear. We now must face the challenges of demon-
strating and evaluating this novel approach to system design. Even if we constrain our demonstration to a
single system, this task will not be easy. However, the potential benefits of its success are great: systems
with vastly improved availability that reduce the maintenance burden on the human administrator and
solve some of the most economically-important problems in the Internet technology sector. Thus we
believe that it is possible and worthwhile to make the attempt. Our goal is to produce a prototype system
that can demonstrate measurable improvements in availability in the face of realistic failure and mainte-
nance situations, including hardware and software failures, upgrades, and system expansion. However, rec-
ognizing the possibility of unforeseen obstacles that may lay hidden on the path to this ultimate goal, we
will present a staged implementation plan that prioritizes the repair-centric design techniques by impact
and importance and provides an incremental evaluation methodology. We begin by selecting a base plat-
form on which we will build our prototype repair-centric system implementation. 

3.1 Target System
We plan to implement our techniques in the context of an Internet email service application. To reduce our
implementation effort as much as possible, we will start with an existing system that already meets our sys-
tem design assumptions and that has been constructed to already provide reasonably high availability
under the traditional non-repair-centric design philosophy. We choose email as an application because it is
a widely-used Internet service with hard-state storage requirements, relaxed semantics for user-visible
interactions, and just enough complexity to make our implementation interesting without being over-
whelming.

The existing email system that we plan to use as our base is the NinjaMail cluster email server [46].
NinjaMail is an email server supporting SMTP, POP, and IMAP mail protocols; it is built on top of the
Ninja cluster-based Internet service infrastructure environment, a research environment currently being
developed at Berkeley [23]. NinjaMail and the underlying Ninja infrastructure provide an ideal platform
for experimentation with repair-centric design. First, NinjaMail meets the assumptions that we laid out in
Section 2.1: it is a service application with well-defined external interfaces, it is designed to run on a
shared-nothing cluster, and it is highly modular in design. NinjaMail (and the Ninja environment) are writ-
ten in Java, a language that supports modularity, easy extension of interfaces, and has demonstrable pro-
ductivity and reliability benefits. Furthermore, the Ninja environment provides a host of mechanisms that
are needed for a repair-centric system design, including: intrinsic support for cluster partitioning, manda-
tory for experimentation with online fault-injection and administrator training; automatic management of
worker processes, including built-in support for rolling software upgrades; a transactional file system that
may prove useful for implementing undo; and asynchronous inter-module communication with intermedi-
ate queues, again potentially useful for undo. Finally, we have easy access to the expertise of the NinjaMail
and Ninja developers.

We choose to start with an existing application rather than writing the system from scratch for several
reasons. First, by using an existing implementation, we inherit implementations of the tedious-to-write but-
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necessary pieces of the system, including external protocol processors, hard-state replica management
algorithms, and request dispatchers. Ninja claims to have solved the difficulties of building scalable cluster
network service applications; we can leverage their efforts rather than reinventing the wheel, leaving us
free to focus primarily on the repair-centric aspects of the system. Second, an existing implementation pro-
vides us with a baseline comparison point against which to validate our progress in improving availability.
Finally, a successful implementation of repair-centric design in an existing system speaks more for our
techniques’ generality than a one-off fully custom system design.

Of course, there are downsides to using an existing system. Paramount is the danger of being con-
strained by the existing design. We believe that NinjaMail is sufficiently lightweight that this will not be a
problem; if it turns out to be, we can still reuse a good portion of the NinjaMail components while discard-
ing the framework itself. There is also the danger of working with a good-sized research system, both in
understanding the design and in keeping up-to-date with system developments. Indeed, NinjaMail is cur-
rently being rewritten to improve its functionality and code consistency. However, the NinjaMail develop-
ers are committed to generating a documented public release in the near future (early snapshots should be
ready by the end of April 2001). We intend to take the public release as a base, and work with the Ninja-
Mail developers to identify any future changes that need to be integrated.

3.2 Implementation Plan
As described above, we divide our implementation plan into stages, prioritized by the potential impact of
each of the repair-centric design techniques. Since our NinjaMail target platform is still somewhat in a
state of flux, we focus primarily on the issues we expect to arise during our implementation rather than
technical implementation specifics.

3.2.1 Stage 1: Undo
The capability of undoing all maintenance actions, described above in Section 2.2.5, is probably the most
powerful and fundamental of our repair-centric design techniques. Even in the absence of the other tech-
niques, undo provides mechanisms for repairing human errors during repair and rolling back system
changes that have lead to undesirable results. As such, it is the backstop for any repair-centric system,
guaranteeing that repairs themselves cannot lead to further problems. It will thus be our first implementa-
tion focus.

Since our focus is on availability and repair, we want to be able to trust our undo mechanism, and thus
there is no place for complex schemes that attempt to provide completely generic, fine-grained undo. For
our prototype implementation in NinjaMail, then, we want to provide the simplest undo scheme that is suf-
ficient to meet the goals we set out in Section 1.1. We therefore propose to implement two forms of undo,
one to handle human errors in replacing cluster components, and the other to allow more generic undo of
system state changes and software upgrades subject to restrictions on its time- and space-granularity.

The first form of undo is motivated by our earlier work in maintainability benchmarking, which
revealed that humans are prone to accidentally replacing the wrong component after a failure, either by
accident or due to a misunderstanding of the system’s organization [5]. While it is easy for systems to
detect when the wrong component has been replaced, they often do not bother, and furthermore even when
incorrect replacement is detectable, it is often not recoverable. For example, our survey of software RAID
systems revealed that none of the major implementations allow an incorrectly-removed disk to be rein-
serted without loss of data [5]. 

To address this, we propose an undo mechanism that allows incorrectly-removed components to be
immediately replaced without loss of data. The mechanism is simple: all requests being sent to a particular
hardware (or software) component in the system must be stored in a (perhaps non-volatile) queue; they are
not removed from the queue until satisfied or acknowledged. When the component in question is acciden-
tally removed, requests are preserved in the queue, and can be satisfied without loss when the component is
reintegrated into the system. The Ninja environment’s use of asynchronous queue-based communication
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provides a good match to this undo implementation, although the use of queues may have to be extended to
the lower-level devices. There are several potential complications with this scheme, most notably what to
do with interrupted requests that are not idempotent. We do not believe this to be a serious problem for an
email system like NinjaMail in which the application semantics are loose enough to tolerate duplication
and reordering, and most of the removable hardware components in an email system like NinjaMail (disks,
network links, etc.) are at least partially based on idempotent or repeatable requests. 

Our second proposed undo implementation is more general, and is designed to address recovery from
state changes such as software upgrades or system reconfiguration. To avoid the complexity of a fully-gen-
eral undo, we propose a maintenance-undo with the following restricted semantics: 

1. undo is available only during certain periods of system operation: it is automatically activated at the
beginning of maintenance procedures and must be turned off once maintenance is successfully
completed, permanently committing any changes made;

2. undo is coarse-grained in space: state is rolled back across the entire cluster, or an independent par-
tition of the cluster;

3. undo is coarse-grained in time: state is rolled back to a particular snapshot of system state, not
action by action. Snapshots are automatically taken at the start of maintenance actions, are nestable,
and can also be manually initiated;

4. no attempt is made to distinguish state changes to user versus system data; user requests are logged
and replayed once the system is rolled back to a snapshot.

These restricted semantics provide the ability to recover from arbitrary changes to the system, at the dual
costs of having to manually define undo points (snapshots and commits) and to replay user requests after
restoration to an earlier undo point; during the rollback-replay period, the system may provide an inconsis-
tent or out-of-date view of user data. We believe that these restricted semantics are acceptable for an email
system like NinjaMail. The manual definition of undo and commit points naturally correspond to the
beginning and end of maintenance interactions with the system, and can be automatically identified by the
system. Logging user requests is simple in an email system, as they consist of idempotent actions like
receiving and deleting messages and updating message metadata. The potential inconsistencies and out-of-
date views of the system are tolerable in an email application, where timeliness of email delivery is not
mandatory and where existing protocols such as IMAP provide only limited consistency guarantees to
mailbox views. We will have to evaluate the extent to which extra system resources are required to replay
changes while still queuing new incoming requests.

To implement these semantics in NinjaMail, we need to implement snapshots and user request log-
ging. User request logging is straightforward: we must simply duplicate and save the stream of incoming
email when undo is active, and likewise log user requests for mailbox metadata manipulation. Snapshots
are more complicated. They are basically system-wide checkpoints of hard state only; all worker modules
in NinjaMail use soft-state and can simply be restarted once the hard-state of a checkpoint is restored. We
see two possible implementation avenues for checkpointing system hard-state: either by copying state
wholesale by reusing existing mechanisms in Ninja for node recovery, or modifying the Ninja hash table
and transactional file system to support copy-on-write versioning; some of this support already exists in the
Ninja file system. The low cost of physical storage today combined with the fact that undo is not active
during normal system operation may allow us to use simpler but more expensive techniques like the first,
but the final choice of mechanism is speculative at best at this point, and will require further investigation
of Ninja’s internal workings.

If taking frequent system snapshots turns out not to be prohibitively expensive in the NinjaMail sys-
tem, we may also investigate relaxing the first restriction above (that undo is only available during mainte-
nance). Recent work has shown that undo-like checkpointing mechanisms can prove useful in tolerating
non-reproducible software bugs (Heisenbugs) if user-visible event histories need not be precisely pre-
served (as in email) [35]; thus, if our undo mechanism were available at all times during system operation,
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it could be used to recover from non-human-initiated software failures as well as from human maintenance
errors.

Finally, although this is not a focus of our work, note that the mechanisms that we develop to provide
undo may be serendipitously useful for enhancing NinjaMail’s maintenance functionality: snapshots pro-
vide on-line, easily-recovered backups, and can also be used as a data transfer mechanism for lazy remote
mirroring.

3.2.2 Stage 2: Exercising maintenance mechanisms
With the undo mechanism in place to provide operators with a fail-safe recovery mechanism during main-
tenance and repair, the next stage of the implementation is to enable verification and improvement of the
system’s maintenance and repair mechanisms, so that repair is more efficient and the last-resort undo is
less necessary. This is accomplished by implementing the verification technique described in Section 2.2.4
and the training technique described in Section 2.2.5.

These two techniques require a very similar set of mechanisms, and benefit from being implemented
together. Both are based on the injection of synthetic faults into the system to trigger situations that require
maintenance or repair; the goals of Section 2.2.4 are to verify the operation of automatic mechanisms
designed to handle these situations, while the training techniques of Section 2.2.5 help the human operator
develop the skills to handle those situations where the automatic mechanisms do not exist or have failed. 

The natural synergies between automatic and human maintenance lead us to an implementation strat-
egy in which we periodically subject the system to a broad range of targeted and random faults and allow
its automatic maintenance mechanisms to attempt repair. In those cases where repair is unsuccessful, we
keep records of the triggering faults and use them as training cases for the human operator, supplemented
by additional targeted training cases for non-repair maintenance procedures such as system upgrades. The
advantage of this approach is that it naturally self-tunes for the level of automatic maintenance provided by
the system: a fully-self-maintaining system will not require much human maintenance, and thus there is lit-
tle need to train the human operator. On the other hand, a more typical system will only be able to automat-
ically handle a small subset of the possible system failure modes. In such a case, our proposed
implementation will automatically compensate by increasing the amount of human training as it builds up
a growing number of training cases.

To carry out this implementation, we need to solve several challenging problems: defining the inject-
able faults, verifying the system or human response to the fault, and most importantly, containing the tests
and the injected faults so that they do not affect the production behavior of the system. Our work for the
first task is minimal, since we can directly reuse the same real-world fault data set and fault-injection infra-
structure described below in Section 4.1 for use in the evaluation of the implementation. For the second
task, we should be able to verify many repair actions directly, especially for targeted faults (for example, a
simulated disk failure is correctly repaired if the affected disk is removed and a different disk is inserted).
For the random faults, we hope to appeal to eventually appeal to the testing infrastructure of stage 3 to ver-
ify restoration of proper system operation.

Finally, the last and most pernicious problem concerns fault containment. To ensure that any faults
triggered by our fault injection do not permanently destroy important data or propagate into the part of the
system not under test, we must isolate part of the system while the tests are being performed. Luckily, the
NinjaMail environment offers several mechanisms that we can leverage. First, it intrinsically supports a
notion of cluster partitions: requests can be temporarily directed away from a subset of the system’s nodes,
isolating them from user traffic. We can modify this mechanism to mirror requests to isolated partitions,
providing them with workload while still maintaining isolation. Furthermore, the base Ninja environment
provides the capability to remove and add nodes from the system, including the mechanisms to resynchro-
nize data onto newly-added nodes. We intend to use these mechanisms to enable “rolling testing”: automat-
ically decommissioning a small subset of the cluster at a time, isolating it from the rest of the system via
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network routing changes, and performing fault injection without worry of damaging the remaining part of
the system still in production use.

There is still the concern that, during training, a well-intentioned human operator might err and make
changes to the production partition of the system rather than the training partition. We think this can be
avoided by making the production system training-aware and having it reject maintenance while training is
in progress; we could also associate an undo window with training to further protect the production system.

3.2.3 Stage 3: Online verification
With the implementation of stage 2 completed, our prototype system should provide significantly
improved reliability and efficacy of both automated and human-driven repair. The next step in our imple-
mentation plan improves the ability of the system to invoke those repair mechanisms when needed by
emphasizing the anticipation of faults and their rapid discovery.

The implementation of online verification in NinjaMail follows directly from the outline sketched in
Section 2.2.1, and from standard techniques in offline software testing such as input selection, result verifi-
cation, and coverage analysis. Our implementation should be simplified by the existing modular structure
of NinjaMail, as we can position our testing and verification code to simply interpose between module
interfaces, rather than having to embed it directly into the modules themselves.

However, the fact that we are planning to introduce self-testing into an online, production environ-
ment adds a new twist. In particular, we need to ensure that our tests are non-destructive to user data (such
as messages and mailbox indices). The simplest way to do this is to configure the tests to operate only on
special test data, which may be derived by replicating existing user data. While this is probably appropriate
for the simplest tests, much more discovery power is gained by testing on the real data. We believe that we
can reuse stage 2’s rolling testing mechanisms to do this, allowing potentially-destructive tests (such as
using fully-random input) to be performed online without fear of losing data.

A second twist in our online self-testing implementation is that we want to detect dynamic perfor-
mance problems with our tests as well as just testing correctness. This is important, since failures often
manifest as performance faults rather than correctness faults, such as in the case of a failing disk [57]. Fur-
thermore, performance faults often indicate that repair is needed to detect and remove system bottlenecks
or to correct software misconfigurations. Our tentative approach to detecting performance faults is to
maintain performance statistics for each targeted test. If a particular execution of a test takes longer than a
statistically-defined maximum amount of time (computed, for example, as the 99.9% upper confidence
bound on the previous test execution times), then we flag a performance fault. It remains to be seen if a sta-
tistically-robust measure can be defined that detects performance faults while not generating false alarms
due to normal workload fluctuation.

We must also consider the means by which our built-in self-testing is invoked. Ultimately, an appro-
priate goal would be to have the system perform testing autonomously, automatically deciding when to
invoke tests. Initially, though, we intend to simply expose the testing infrastructure to an external master
control module, allowing us to experiment with different testing frequencies and also allowing us to invoke
self-testing for specific verification tasks, for example to ensure proper functioning of a newly-replaced or
upgraded component.

Finally, we are particularly interested in examining the utility of global conservation metrics as a sys-
tem-wide error-detection mechanism; we identified an example law for email in Section 2.2.1, and hope to
develop others after further study of the dynamics of the NinjaMail system. We expect to implement such
checking by adding data-flow measurement points to system modules, and periodically polling them via an
external master controller that implements the conservation-law analysis.

3.2.4 Stage 4: Diagnostic aids
The final stage of our implementation is to implement diagnostic aids that will help the human operator
identify and correct new, unexpected faults in the system. This implementation stage covers the techniques
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described in Section 2.2.2 and Section 2.2.3: explicit fault information collection, and dependency collec-
tion for root-cause analysis. Note that this stage is essentially orthogonal to the previous stages; it is an
optimization to repair, rather than a fundamental change in how repair is viewed in system design.

The implementation of this fourth stage in the NinjaMail system follows directly from the discussions
in Section 2.2.2 and Section 2.2.3. We want to modify the inter-module interfaces in the NinjaMail system
to provide asynchronous notification of failures and to track the resources touched by requests as they
travel through the system. The interface modifications themselves are straightforward. The challenge in the
first task is to devise a representation for faults and status information that is general enough to capture
module-specific failure information yet can still be used by all levels of the system. The simplest approach
is to build a hierarchical representation that is specific to the structure of the NinjaMail system. A more
general technique would be to distill all failure information into performability metrics that represent devi-
ation from some baseline of performance, probability of data retrieval, consistency and timeliness of data,
and so forth. 

We must also determine if and how NinjaMail’s internal components can make use of the propagated
status information. For example, we believe we can modify NinjaMail to make use of failure information
from its storage modules (along with the relaxed consistency guarantees of email) to allow it to provide
partial service even in the case of failure. We also intend to collect the propagated fault and health informa-
tion from the edges of the system and use it to produce status displays for the human administrator.

However, in order to make these status displays usable during failure situations, we need to imple-
ment the second half of stage 4, direct dependency collection by tracking resources touched by requests as
they travel through the system. We believe that this is relatively simple in NinjaMail, as all communication
within the system passes through a common layer that associates a queue with each module. It should be
possible to use the sequence of queues touched by a request as an indication of the system dependencies
associated with that request. The only obvious challenges here involve handling work is not associated
with a request (solved by generating a pseudo-request for it), correlating work done on behalf of multiple
requests (solved by careful bookkeeping), and integrating the dependency information with the health data
in a useful manner to the human diagnostician (hopefully simplified by the constraints of a single-applica-
tion service).

4 Evaluation Plan
Having laid out our four-stage implementation plan, we now describe how we intend to benchmark our
progress. We have two approaches. First, we want to verify each stage’s implementation and confirm the
effectiveness of its techniques. These evaluations are like microbenchmarks of each stage. Second, we
want to measure the availability of the entire system in order to evaluate the effectiveness of repair-centric
design. These evaluations are like system macrobenchmarks, not directly evaluating the specific design
techniques but illustrating their contributions to improved availability. Both the micro- and macro-bench-
marks rely on some common techniques, which we will describe first.

4.1 Common techniques: workload, fault injection, fault model, and humans
All of our benchmarks require that the system be subjected to a realistic user workload. To do this, we
intend to use the SPECmail2001 email benchmark [54]. This is an industry-standard benchmark for email
systems that simulates a typical ISP-user email workload, both in terms of mail delivery and mail retrieval.
In addition to providing workload, SPECmail measures email performance, allowing us to gauge the per-
formance overhead introduced by our repair-centric modifications relative to the base NinjaMail system.

In order to evaluate our repair-centric design techniques we must be able to simulate failures and
maintenance events without having to wait for them to occur naturally. To do this, we use fault injection to
create failures and bring the system into states where maintenance is required. Accurate fault injection
requires two things: a fault model that is capable of inducing a set of failures representative of what is seen
in the real world, and a harness to inject those faults. In our previous work, we have defined fault models
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for storage systems based on disk failures [7], but we will need a much broader fault model representative
of failures in large network service systems in order to benchmark our email system. To get this model, we
have undertaken to collect failure and maintenance data from a set of commercial sites; we plan to distill
this data into set of injectable faults to use in our experiments. 

Obtaining realistic fault and maintenance data is a major goal of this research, as it is central to our
evaluation and also to the techniques to be implemented in stage 2. However, we do not yet have any of
this data. Real-world failure data is sensitive, and companies are often unwilling to release it to research-
ers. We are currently working with several companies that have expressed some interest in sharing failure
data, including Microsoft, IBM, and Hotmail, and we are committed to making at least one of these part-
nerships a success. However, in the case that all of our attempts fail, we will have no choice but to take the
unsatisfactory path of conjuring up a set of injectable faults based on our own intuition and anecdotal evi-
dence of system failure modes. 

In addition to whatever realistic, targeted fault workload that we develop, we believe it is essential to
also test with randomly-injected faults. While these tests may not simulate common-case failure situations,
they are more likely to stimulate unexpected “Heisenbugs” or simulate the kinds of failures seen in “nor-
mal accidents”; they may capture the long tail in the distribution of possible system failures, after the tar-
geted tests have covered the common case.

With a fault model in place, we need a harness to inject those faults. We believe that this harness
should be built directly into our prototype email system. The reason for this choice is that an integrated
fault-injection infrastructure is needed for stage 2 of our implementation anyway, and the work necessary
to build it internally is likely less than that needed to bolt it on externally. To build this integrated infra-
structure, we anticipate having to perform tasks such as modifying the low-level device drivers of our clus-
ter to simulate observed hardware failure modes (including performance degradations); using Chen’s
software-fault-injection model [9] to simulate random bugs in NinjaMail’s software modules; and modify-
ing the Ninja communications infrastructure to simulate overloaded or slow modules.

Note that the one disadvantage of building-in the fault-injection infrastructure is that we will not be
able to use it to measure the baseline availability of an unmodified NinjaMail system; our comparisons will
have to be with a version of NinjaMail unmodified except for the introduction of the fault-injection infra-
structure.

Finally, a note about human experiments. Many of our evaluation methodologies inescapably require
participation by human subjects acting as system administrators and carrying out the human components of
repair and maintenance. We intend to carry out these human-participation experiments using similar proto-
cols as in our previous work on maintainability benchmarks [5], with computer-savvy subjects that are
familiar with and trained on the details of system operation.

4.2 Microbenchmarks: testing and evaluating the stages

Stage 1: Undo. Recall that we defined two components to our undo implementation: the ability to discon-
nect and reconnect any system resource without loss of data, and a more general state-restoring mainte-
nance-undo. To evaluate the first, we can carry out microbenchmarks in which we disconnect each
removable component in the NinjaMail system and verify that it can be reattached without losing state, all
while the system is under load. To evaluate the more general maintenance-undo, we will attempt to per-
form and undo each of the common maintenance operations identified in our study of real-world mainte-
nance data (such as software and hardware upgrades). We will also test undoing combinations of
maintenance operations. Note that fully evaluating the benefits of undo requires an availability benchmark,
as described below.

Stage 2: Exercising maintenance mechanisms. Recall that stage 2 has two components: exercising and
evaluating built-in recovery mechanisms, and training the system operators to reduce their error rates.
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Evaluating the effectiveness of the first component of stage 2 is difficult since we are not actively develop-
ing recovery mechanisms in NinjaMail beyond its existing ones. It may be that our stage 2 implementation
reveals problems with these existing mechanisms (especially as they are described as “flaky at best” by
their authors [46]), which would directly demonstrate its effectiveness. If it does not, however, then we
may be left with evaluating stage 2 on secondary criteria, such as how well it can verify the results of an
automatic recovery, or how well it is able to cover the built-in repair mechanisms. We may have to pur-
posely break existing recovery mechanisms in known ways to perform these analyses.

Evaluating the effectiveness of the second component of stage 2, training, is conceptually simple but
requires a clever implementation. Effectively, we want to see if automatic training reduces human error
rates, but we want to do so without having to carry out the kind of long-term, multi-week human study that
would be needed to measure this directly. We need to compress the timescale somehow; one way to do this
would be to divide our population of human subjects into groups and give each group a different amount of
direct training with the system. This could be done by having each group perform a different number of
maintenance tasks or diagnoses selected to match what the system would automatically present during
training. After this variable amount of training, each group would then have to solve the same set of system
problems and perform the same set of maintenance tasks; we would measure their error rates and their effi-
ciency, allowing us to calculate the effect of the variable amounts of training on these metrics. The only
limitation of this compressed-timescale approach is that we do not capture the effects of short- and long-
term memory. While there are ways around this (for example, by spreading training sessions out over a
longer time period), further consideration and possibly pilot experiments will be necessary to work out an
appropriate training evaluation methodology.

Stage 3: Online verification. The goal of built-in online verification is to improve fault detection. A sys-
tem’s performance on this task can be measured by placing the system under a realistic workload, injecting
faults from the realistic and random fault models, and measuring both the percentage of detected faults and
the latency from fault injection to detection. We will compare these results to the same tests performed on
the unmodified NinjaMail system.

Stage 4: Diagnostic aids. Two key metrics for diagnostic aids are correctness and selectivity. Correctness
measures whether diagnostic aids correctly include the actual fault location as a possible culprit; selectivity
measures how much can they reduce the space of possible fault culprits, To measure these quantities, we
will inject targeted and random faults from our fault models into the system. To calculate correctness, we
simply compute the ratio of the number of fault diagnoses including the true fault location to the total num-
ber of fault injects. To measure selectivity, we compute the ratio of the number of possible fault locations
suggested by the dependency analysis model to the total number of potentially-faulty resources in the sys-
tem. As with undo, fully evaluating the benefits of diagnostic aids requires an availability benchmark.

4.3 Macrobenchmark: Availability benchmarking
The stage-by-stage evaluation techniques described above will be useful for evaluating the effectiveness of
our implementations of each of the repair-centric design techniques. The ultimate measure of our work,
however, is a quantitative measurement of the availability improvement due to our repair-centric design
philosophy. To take this measurement, we can perform availability benchmarks on both our modified and
the baseline NinjaMail systems. Availability benchmarking is a technique we introduced and developed in
previous work [7]. Note that the formulation of availability benchmarks that we describe here is a con-
glomeration of our original availability benchmarks [7] with our work on maintainability benchmarks [5].
The availability benchmarks that we describe below can be applied at any point during the implementation,
and certainly when it is complete.

In a nutshell, an availability benchmark measures the deviations in the quality of service delivered by
a system under a representative workload as realistic faults are injected into the system. We have already
17



identified a workload, fault model, and fault-injection harness in Section 4.1, above. We believe that sev-
eral quality-of-service metrics are appropriate. For direct measurement of availability, we will use the devi-
ation of the SPECmail2001 performance metric (messages/minute) from its normal range, and a measure
of the system’s error rate (lost or corrupted messages and mailboxes). As secondary metrics, we will also
measure the amount of time spent by humans in administering the system, and the number of availability
degradations resulting from human actions.

As indicated by our secondary metrics, our availability benchmarks will require human participation.
This is unavoidable: several of our design points (undo, diagnostic aids, training) directly address human-
computer interaction, and are not truly measurable without human experiments. The difficulty of perform-
ing these experiments may limit the number of system-wide availability benchmarks that we can carry out.

5 Relation to Related Work

Repair-centric design philosophy: The notion of repair-centric design is relatively novel in the systems
and reliability communities, and there is very little existing work on designing systems that repair failures
rather than trying to avoid them. One notable exception is in recent work on the design of frameworks for
Internet services in which worker modules rely only on soft-state and are therefore restartable. In these
schemes, such as the TACC framework described by Fox et al. [18] and the Ninja framework itself [46],
application code implemented as worker modules is designed to be fully restartable at any time; all impor-
tant hard state is kept elsewhere in the system and can be reloaded upon restart. This design acknowledges
that application code can be buggy and provides fast restart and recovery mechanisms. More recent work
has attempted to formalize the properties of such restartable systems and to devise the most appropriate
ways to perform restart-based recovery [8] [28]. Furthermore, anecdotal reports suggest that these design
techniques are used by production Internet services [8].

Our proposed work rests on the same philosophical underpinnings as this previous work, but goes
beyond it in two ways. First, we include a focus on the sorely-neglected problem of human maintenance by
providing techniques such as undo, root-cause-analysis, and training to assist in human diagnosis and
repair of system problems as well as regular system maintenance. Second, we introduce the idea of online
self-testing in the context of server systems, including testing at module interfaces as well as potentially-
destructive tests of recovery mechanisms, with the goals of preempting catastrophic failures and reducing
fault detection latency. To our knowledge, such potentially-destructive fault-injection-based testing has
never been proposed for use in a running production server system, although some IBM mainframe
designs have come close, as described below.

The human role in availability: The human operator’s role in maintaining system availability has been
well-understood for years. In 1975, Jack Goldberg told the fault-tolerance community that “fool tolerance”
should be an important aspect of fault-tolerant system design [19]. In the late 1970s and early 1980s, much
work was done on the analysis of the human’s impact on diagnostics and maintenance in the context of
military and industrial electronics systems; entire symposiums were dedicated to devising solutions to
understanding human diagnostic behavior, improving human training, and avoiding human errors [50].
Even today, human operator error is considered in the design of industrial systems such as aircraft control
systems [37] and train control systems [29], although as the latter work shows, designers often still neglect
the impacts of stress and workload on human error rates.

Despite this earlier work, human error is almost entirely neglected in the work of the modern com-
puter system design community. In the proceedings of the past several years of the main systems confer-
ences, the Reliability and Maintainability Symposia, and the Fault-Tolerant Computing Symposia, only
one author, Roy Maxion, has published on designing computer systems that take into account human error-
proneness in order to provide availability or dependability. Maxion’s work covers two forms of human
maintenance error. In one paper, he identifies poor or unlocatable documentation as a major contributor to
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human system maintenance errors that cause unavailability, defines an imprecise querying technique to
help improve documentation effectiveness, then evaluates his technique in user studies, although he does
not extrapolate these results into a prediction of improved availability [40]. In another, he identifies user-
interface flaws as a contributor to human error, and provides a methodology for locating them [39]. While
Maxion’s work is motivated by the same general concerns as our proposed approaches to reducing the
availability impact of human error, his targets are orthogonal to ours: we are concerned with reducing
human errors by improving familiarity with existing interfaces through training and by providing a way to
undo errors, rather than by trying to improve those existing interfaces to make training and undo less nec-
essary. This distinction follows from our unique philosophy of trying to cope with problems such as poor
user interface design rather than solving them outright.

Undo: While the concept of undo is found frequently in computer systems, particularly in productivity
applications, to our knowledge it has never been applied to large-scale system maintenance tasks such as
software upgrades or failure repair procedures. Perhaps the most similar idea is that of using file-system
snapshots to provide a limited form of recovery from user errors such as accidental file deletions, as in the
Network Appliance WAFL file system [26], but this is not a true undo in that it cannot reconstruct changes
made to files since the last snapshot. Combining such an approach with logging, as is done in databases
[44], would provide an undo facility similar to what we are proposing, but existing systems tend not to use
such combinations of facilities to provide the capability of undoing large-scale system maintenance opera-
tions like hardware or software reconfigurations, repairs, or upgrades.

The techniques that we have proposed for our maintenance-undo, however, do follow directly from
techniques used in other areas of computer system design. Checkpoints are a commonly-used mechanism
for recovering from failures of long-running computations and database systems, and the idea of logging
and replaying messages and user requests to roll a system forward from a checkpoint is also well-explored
in the literature [3] [14] [35] [36] [44]. The work in checkpointing and rolling-forward entire applications
has focused primarily on the challenges of transparently and consistently checkpointing application and
operating system state and on performing distributed checkpoints. Our use of these techniques is somewhat
different. First, our transparency requirements are limited, as the semantics of our email application allow
some user-visible inconsistencies, and as we control the details of our service implementation. Further-
more, while undoing a botched maintenance operation is similar to recovering from an application failure,
our maintenance-undo can take advantage of its restricted semantics (a defined time window for undo,
coarse space- and time-granularities) to achieve a much simpler and less-performance-critical implementa-
tion than these generic checkpointing and roll-forward schemes. Finally, unlike a database system where
checkpoints and logging are used to provide ACID semantics for transactions [22] [44], our email system
will have little need for such strict semantics due to the properties of the application itself.

Online verification: Our online verification proposals break down into two categories: verification
through passive checking, and active testing via input injection. Passive checking has been a mainstay of
fault-tolerant system design since its inception, implemented either as multi-way component replication
with comparison and voting logic [21] or as domain-specific external checking logic such as ECC logic in
the memory system or parity prediction in state-machine design [52] [53]. Our goal is to extend such pas-
sive verification techniques, typically seen at only in expensive fault-tolerant hardware, into software mod-
ules in an Internet service environment.

The second category of online verification, on-line self-testing via input injection, is an extension of
both traditional heartbeat protocols and built-in self-test (BIST) techniques. We have already discussed
how our approach of using realistic inputs provides far greater testing power than heartbeats (in Section
2.2.1, above). BIST is a well-known fault-tolerant design technique that is used frequently in high-end
fault-tolerant systems and mainframes, but historically it has been used offline, either during manufactur-
ing or immediately before a system enters production use [55]. Recently, there has been more interest in
on-line BIST in embedded safety controller systems (such as automotive ABS systems); work by Stein-
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inger and Scherrer on an automotive steer-by-wire system model has demonstrated that on-line BIST can
significantly improve overall availability in a redundant system design by detecting dormant faults in less-
frequently-exercised modules and forcing components to fail silently before they have a chance to corrupt
the system [55]. This is exactly what we hope to show in the context of a non-embedded server environ-
ment, using a practical implementation rather than a model-based calculation.

Integrated fault injection:  Recall that we have proposed that systems be constructed with integrated
fault-injection mechanisms as a way to dynamically test system recovery code and operator-driven repair
actions. While we believe our proposal is unique in that we expect to perform these tests in an online man-
ner, our notion of a built-in fault injection infrastructure is one that goes back in time all the way to the
IBM 3090 and ES/9000 mainframes. These systems had highly-sophisticated built-in infrastructures for
injecting faults into hardware data and control paths and for explicitly triggering recovery code [42]. These
infrastructures were used for test-floor verification of the mainframes’ recovery and serviceability mecha-
nisms under production-like customer workloads, although as far as we know were not activated in field-
deployed systems.

Diagnosis: Root-cause analysis is a well-known problem in system management, and many techniques
have been developed to address it. One of the most interesting is the combination of monitoring, protocol
augmentation, and cross-layer data correlation developed by Banga for use in diagnosing network prob-
lems in Network Appliance servers [1]. Unfortunately, this approach is system-specific, requiring custom
code and expert protocol knowledge. A more generic approach is dependency analysis, which uses tra-
versal-based techniques to subset potential root causes from an overall dependency graph based on
observed symptoms and alarms [10] [24] [32] [59]. Dependency analysis requires a good dependency
model, and unfortunately there has been little work on obtaining the needed dependency models from com-
plex systems. The authors of the works referenced above simply assume the existence of dependency mod-
els, and the existing work on computing dependency models either assumes the unlikely existence of a
system configuration repository [31], requires a compiler that can statically extract resource hierarchies
[43], or uses perturbation experiments that are unlikely to work in the complex, asynchronous systems that
underlie Internet services [6]. While our proposed direct approach to tracing request dependencies is simi-
lar to existing work that uses request-stamping to track resource utilization in distributed systems [47], we
believe that its application as a diagnostic aid is unique and that it solves the problem of obtaining depen-
dencies in cases where the system implementation can be modified.

6 Timeline
The goal is to complete the research described herein (including dissertation writing) by May 2003. An
aggressive timeline for accomplishing this is as follows:
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We recognize that this timeline may be optimistic given the scope of the proposed research, and we
acknowledge the possibility that potential new graduate students in the project may want to assume some
of the work in achieving our ultimate vision. We believe that the staged implementation plan described in
Section 3.2 allows us to accommodate unforeseen delays and complications by eliminating stages or hand-
ing them off to other students. 

As a bare minimum, we are committed to accomplishing the following: stages 1 and 2 of the Ninja-
Mail implementation, the collection of real-world failure and maintenance data, and the human experi-
ments needed to generate an evaluation of the overall availability improvements due to repair-centric
design. We believe that this set of work still constitutes a coherent parcel of research, as it captures the
most novel human aspects of the repair-centric techniques that we have proposed.

In addition to this bare minimum, we feel that also accomplishing stage 3 is a realistic goal even in the
case of unforeseen complications. As stage 4 is somewhat orthogonal to the other 3 stages and can be
developed in parallel, it is the obvious candidate to hand off should the need arise.

7 Conclusions
We have proposed a radical approach to high-availability system design that breaks from tradition by rec-
ognizing failures as inevitable and by providing mechanisms for efficiently detecting and repairing them.
Our approach is unique in that it treats the human component of highly-available systems as inseparable
from the system component and thus includes design techniques to simplify human maintenance tasks,
compensate for human errors, and reduce human error rate. We believe that our human- and repair-centric
approach will provide significant improvements in availability relative to standard fault-tolerance tech-
niques, especially in the dynamic environment of Internet service applications, and we hope to demonstrate
those improvements quantitatively in our extensions to the existing NinjaMail email service application. If
successful, we believe that this work and its new human- and repair-centric design paradigms will com-
prise a significant contribution to the state-of-the-art in system availability research.
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