
IEEE INTERNET COMPUTING 1089-7801/02/$17.00©2002 IEEE http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 41

G
lo

ba
l

D
ep

lo
ym

en
t

of
 D

at
a

C
en

te
rs

David Oppenheimer
and David A. Patterson
University of California at Berkeley

Architecture and
Dependability of
Large-Scale Internet
Services
An analysis of the architectures and causes of failure at three

large-scale Internet services can help developers plan reliable

systems offering maximum availability.

In the past few years, the popularity of
large-scale Internet infrastructure ser-
vices such as AOL, Google, and Hot-

mail has grown enormously. The scalabil-
ity and availability requirements of these
services have led to system architectures
that diverge significantly from those of
traditional systems like desktops, enter-
prise servers, or databases. Given the need
for thousands of nodes, cost necessitates
the use of inexpensive personal computers
wherever possible, and efficiency often
requires customized service software. Like-
wise, addressing the goal of zero downtime
requires human operator involvement and
pervasive redundancy within clusters and
between globally distributed data centers.

Despite these services’ success, their
architectures — hardware, software, and
operational — have developed in an ad

hoc manner that few have surveyed or
analyzed.1,2 Moreover, the public knows
little about why these services fail or
about the operational practices used in an
attempt to keep them running 24/7.
Existing failure studies have examined
hardware and software platforms not
commonly used for running Internet ser-
vices, or in operational environments
unlike those of Internet services. J. Gray,
for example, studied fault-tolerant Tan-
dem systems;3 D. Kuhn studied the pub-
lic telephone network;4 B. Murphy and T.
Gant examined VAX systems;5 and J. Xu
and his colleagues studied failures in
enterprise-scale Windows NT networks.6

As a first step toward formalizing the
principles for building highly available
and maintainable large-scale Internet ser-
vices, we are surveying existing services’

architectures and dependability. This article des-
cribes our observations to date.

A New Application Environment
The dominant software platform is evolving from
one of shrink-wrapped applications installed on
end-user PCs to one of Internet-based application
services deployed in large-scale, globally distributed
clusters. Although they share some characteristics
with traditional desktop and high-availability soft-
ware, services comprise a unique combination of
building blocks, with different requirements and
operating environments. Table 1 summarizes the
differences between the three types of applications.

Users increasingly see large-scale Internet ser-
vices as essential to the world’s communications
infrastructure and demand 24/7 availability. As
Table 1 suggests, however, these services present
an availability challenge because they

� typically comprise many inexpensive PCs that
lack expensive reliability features;

� undergo frequent scaling, reconfiguration, and
functionality changes;

� often run custom software that has undergone
limited testing;

� rely on networks within service clusters,
between geographically distributed collocation
facilities, and between collocation facilities and
end-user clients; and

� aim to be available 24/7 for users worldwide,
making planned downtime undesirable or
impossible.

On the other hand, service architects can ex-
ploit some features of large-scale services to en-
hance availability:

� Plentiful hardware allows for redundancy.
� Geographic distribution of collocation facilities

allows control of environmental conditions and
resilience to large-scale disasters.

� In-house development means that operators
can learn the software’s inner workings from
its developers, and can thus identify and cor-
rect problems more quickly than IT staffs run-
ning shrink-wrapped software that they see
only as a black box.

We examine some techniques that exploit these
characteristics.

Maintainability is closely related to availabili-
ty. Not only do services rely on human operators
to keep them running, but the same issues of scale,
complexity, and rate of change that lead to fail-
ures also make the services difficult to manage.
Yet, we found that existing tools and techniques
for configuring systems, visualizing system con-
figurations and the changes made to them, parti-
tioning and migrating persistent data, and detect-
ing, diagnosing, and fixing problems are largely
ad hoc and often inadequate.

Architectural Case Studies
To demonstrate the general principles commonly
used to construct large-scale Internet services, we
examine the architectures of three representative

42 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Table 1. Comparison of Internet service application characteristics
with those of traditional applications.

Characteristic Traditional Traditional Large-scale Internet
desktop applications high-availability applications service applications

Dominant application Productivity applications, games Database, enterprise messaging E-mail, search, news, e-commerce,
data storage

Typical hardware platform Desktop PC Fault-tolerant server or failover cluster Clusters of hundreds to
thousands of cheap PCs, often
geographically distributed

Software model Off-the-shelf, standalone Off-the-shelf, multitier Customized, multitier
Software release frequency Months Months Days or weeks
Networking environment None (standalone) Enterprise-scale Within cluster, on the Internet

between data centers, and
to and from user clients

Operator end user Corporate IT staff Service operations staff, data
center/collocation site staff

Typical physical environment Home or office Corporate machine room Collocation facility
Key metrics Functionality, interactive latency Availability, throughput Availability, functionality, scalability,

manageability, throughput

services, which we will call:

� Online—an online service/Internet portal
� Content—a global content-hosting service
� ReadMostly—a high-traffic Internet service

with a very high read-to-write ratio

Table 2 highlights some of the services’ key char-
acteristics. To keep the services’ identities confi-
dential, we have abstracted some of the informa-
tion to make it more difficult to identify them.

Architecturally, these services

� reside in geographically distributed collocation
facilities,

� consist largely of commodity hardware but
custom software,

� achieve improved performance and availabili-
ty through multiple levels of redundancy and
load balancing, and

� contain a load-balancing tier, a stateless (stores
no persistent state except operating system
code) front-end tier, and a stateful (stores per-
sistent data) back-end tier.

As Table 2 (next page) shows, the primary differ-
ences between these services are load and
read/write ratio.

Geographic Server Distribution
At the highest level, many services distribute their
servers geographically. Online distributes its
servers between its headquarters and a nearby col-
location facility; ReadMostly uses a pair of facili-
ties on the United States East Coast and another
pair on the West Coast; and Content uses four
facilities: one each in Asia, Europe, and the East
and West Coasts of the U.S. All three services use
this geographic distribution for availability, and in
all but Content the redundant data centers share
in handling user requests to improve performance.

When using distributed data centers to share
load, services can employ several mechanisms to
direct user queries to the most appropriate site. The
choice of site generally takes into account each
site’s load and availability.

Content pushes this functionality to the client,
which runs custom software pointed to one pri-
mary and one backup site. To reduce administra-

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 43

Large-Scale Internet Services

Internet
Paired site

Clients

Load-balancing switch

Stateless servers
for stateful services

(e-mail, news, favorites,
and so on)

(Six service groups
of eight servers each)

Stateless servers
for stateless services

(for example,
content portals)

(50 total)

Web proxy
caches
servers

(400 total)

News article
storage

Database
(storage of customer records, crypto keys,

billing information, and so on)

Filesystem-based storage
(Net App filers)

(Six total; one per service group)

Figure 1. Architecture of an Online site. Depending on the feature selected, the client software chooses
to route the user request to a Web proxy cache server, one of 50 stateless servers, or one of the eight
servers from the user’s service group. Network appliance servers store persistent state, which cluster
nodes access via Network File System (NFS) over the user datagram protocol (UDP). A leased network
connection links the cluster to a second site at a collocation facility.

tive complexity, the two sites work in redundant
pairs — the service points some clients to one pair
of sites, and other clients to another pair. A client’s
primary server site propagates updates to its sec-
ondary server site nightly.

Whenever an Online client connects, a server at

the company’s headquarters provides the client
with an up-to-date list of the best servers to con-
tact. The servers might be at the company’s head-
quarters or at its collocation facility.

ReadMostly uses its switch vendor’s proprietary
global load-balancing mechanism to direct users.
This mechanism rewrites DNS responses based on
sites’ load and health information, which it collects
from cooperating switches at those sites.

Single-Site Architecture
A single site’s architecture consists of three tiers:
load balancing, front-end servers, and back-end
servers. Figures 1, 2, and 3 depict the single-site
architectures of Online, Content, and ReadMostly,
respectively.

Load balancing. To balance load, one or more net-
work switches distributes incoming requests to
front-end servers based on the servers’ loads.
Although many modern switches offer Layer-7
switching functionality — meaning they can route
requests based on the contents of a user’s request
— none of the services we surveyed use this fea-
ture. Instead, they generally use simple round-
robin DNS or Layer-4 load distribution to direct
clients to the least loaded front-end server. In
round-robin DNS, a service advertises multiple IP
addresses and continuously reprioritizes the
addresses to spread load among the corresponding
machines. In Level-4 load distribution, clients con-
nect to a single IP address and the cluster’s switch
routes the connection to a front-end server.

Content and ReadMostly use Layer-4 request
distribution at each site, as does Online for state-
less parts of its service (the Web proxy cache and
content portals, for example). For the stateful parts
of its service (such as e-mail), Online also uses
Layer-4 request distribution, but adds a level of
stateful front-end load balancing on top. In par-
ticular, Online maps a user to one of several clus-
ters (called service groups) based on the user’s
identity (determined when the user logs in to the

44 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Internet

Paired client service proxies

Paired backup site
Load-balancing switch

Data storage servers (100 total)

Metadata servers
(14 total)

Figure 2. Architecture of a Content site. Stateless metadata servers
provide file metadata and route requests to the appropriate data
storage server. These servers, which use commodity hardware and
run custom software, are accessed via a custom protocol over UDP.
The Internet connects each cluster to its twin backup site.

Table 2. Characteristics of the large-scale Internet services examined.

Characteristic Online Content ReadMostly
Hits per day ~100 million ~7 million ~100 million
Number of machines ~500, at two data centers ~500, at four data >2,000, at four data centers

centers plus client sites
Hardware Sparc and x86 x86 x86
Operating system Solaris Open-source x86 Open-source x86
Relative read/write ratio High Medium Very high (and users update very little data)

service). The service further load balances each
cluster internally using Level-4 load balancing.

A general principle in service building is to
use multiple levels of load balancing: among
geographically distributed sites, among front
ends in a cluster, and possibly among subsets of
a cluster.

Front end. Once the service makes the load-bal-
ancing decision for a request at the cluster level,
it sends the request to a front-end machine. The
front-end servers run stateless code that answers
incoming user requests, contacts one or more
back-end servers to obtain the data necessary to
satisfy the request, and in some cases returns that
data to the user (after processing it and rendering
it into a suitable presentation format). We say “in
some cases” because some services, such as Con-
tent, return data to clients directly from the back-
end server. The exact ratio of back end to front-
end servers depends on the type of service and the
performance characteristics of the back end and
front-end systems. The ratio ranged from 1:10 for
Online to 50:1 for ReadMostly.

Depending on its needs, the service might par-
tition the front-end machines by functionality
and/or data. Content and ReadMostly use neither
characteristic; all front-end machines access data
from all back-end machines. Online, however,
does both. It partitions for functionality by using
three kinds of front-end machines: front ends for
stateful services, front ends for stateless services,
and Web proxy caches, which are essentially front
ends to the Internet because they act as Internet
content caches. For data, Online further partitions
the front ends to stateful services into service
groups.

In all cases, the front-end machines were inex-
pensive PCs or workstations. Table 3 summarizes
the three services’ internal architectures. All three
use customized front-end software rather than off-
the-shelf Web servers for functionality or perfor-
mance reasons.

Back end. Back-end servers provide services with
the data they need to satisfy a request. These
servers store persistent data, such as files (Content
and ReadMostly) and e-mail, news articles, and
user preferences (Online). The back end exhibits
the greatest variability in node architecture: Con-
tent and ReadMostly use inexpensive PCs, while
Online uses file servers designed especially for
high availability. Online uses Network Appliance’s
Write Anywhere File Layout (WAFL) filesystem,

Content uses a custom filesystem, and ReadMost-
ly uses a Unix filesystem.

In the back end, data partitioning is key to over-
all service scalability, availability, and maintain-
ability. Scalability takes the form of scale-out —
that is, services add back-end servers to absorb
growing demands for storage and aggregate
throughput. Online, Content, and ReadMostly rep-
resent a spectrum of back-end redundancy schemes
for improving availability and performance.

Each Online service group consists of approxi-
mately 65,000 users and is assigned to a single
back-end Network Appliance filer. Each filer uses
a redundant array of inexpensive disks, level 4
(RAID-4), which allows the service group to toler-
ate a single back-end disk failure. If a single filer
fails, however, all users in that group lose access
to their data. Moreover, the scheme does not
improve performance, because the filer stores only
one copy of the data.

Content partitions data among back-end stor-
age nodes. Instead of using RAID, the service repli-
cates each piece of data on a storage server at a
twin data center. This scheme offers higher theo-
retical availability than the Online scheme because
it masks single disk failure, single storage server
failure, and single site failure (due to networking
problems, environmental issues, and the like).
Content’s back-end data redundancy scheme does
not improve performance either, because it assigns
only one default site to retrieve data to service user
requests, and uses the backup twin site only when

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 45

Large-Scale Internet Services

Internet

Load-balancing switch

Clients

User
requests/
responses

User
requests/

responses
Load-balancing switch

Paired backup site Paired backup site

Stateless Web
front ends
(dozens)

Stateful storage
back ends

(100s to 1,000s)

Figure 3. Architecture of a ReadMostly site. Web front ends direct
requests to the appropriate back-end storage server(s). Commodity
PC-based storage servers store persistent state, which is accessed
via a custom protocol over TCP. A redundant pair of network switch-
es connects the cluster to the Internet and to a twin backup site via
a leased network connection.

the first storage server or its site fails.
Finally, ReadMostly uses full replication to

achieve high availability and improve perfor-
mance. The service replicates each piece of data
among nodes in the cluster and among geograph-
ically distributed clusters. It load balances incom-
ing requests from the front end among redundant
copies of data stored in the back end. This
improves both back-end availability and perfor-
mance by a factor proportional to the number of
data copies stored. However, such a redundancy
scheme would not be appropriate for a more write-
intensive service: The service must propagate
updates to all nodes storing a particular piece of
data, which slows updates.

Networking. The wide-area networking structure
among server sites varies greatly for the three ser-
vices, whereas single-site networking follows a
common pattern. In particular, a collocation facil-
ity’s network is generally connected to a service’s
first-level switch, which is then connected by
Gigabit Ethernet to one or more smaller second-
level switches per machine room rack. These sec-
ond-level switches are in turn connected by 100-
Mbps Ethernet to individual nodes. Although sites
commonly use redundant connections between
first- and second-level switches, none of the sites
use redundant Ethernet connections between
nodes and second-level switches, and only one
(ReadMostly) uses redundant connections between
the collocation facility’s network and the first-
level switches.

Despite the recent emergence of industry-stan-
dard, low-latency, high-bandwidth system-area
networking technologies such as Virtual Intercon-
nect Architecture (VIA) and Infiniband, all three
services use UDP over IP or TCP over IP within
clusters. This is most likely due to cost: a 100BaseT
NIC card costs less than US$50 (and is often inte-
grated into modern motherboards), although a PCI

card for VIA costs about US$1,000.

Service Operational Issues
The need to develop, deploy, and upgrade services
on “Internet time,” combined with the size and
complexity of service infrastructures, places unique
pressures on the traditional software life cycle. This
is most apparent in testing, deployment, and oper-
ations. The amount of time available for testing has
shrunk, the frequency and scale of deployment has
expanded, and the importance of operational issues
such as monitoring, problem diagnosis and repair,
configuration and reconfiguration, and general
system usability for human operators has grown.
Online, Content, and ReadMostly address these
challenges in various ways.

Testing
All three services test their software before releas-
ing it to their production cluster. Development
quality assurance (QA) teams test the software
before deployment. These groups use traditional
testing techniques such as unit and regression
tests, and use both single nodes and small-scale
test clusters that reflect the production cluster
architecture.

Online has a three-step testing and deployment
process for new software and for features added
after the software passes unit development QA tests.

� The development group deploys the candidate
software on its test cluster. Developers run the
software, but the operations team configures it.

� The operations group takes the stable version
of the software, deploys it, and operates it on
its test cluster.

� The operations group releases alpha and beta
versions of the software to the production ser-
vice. For major releases, the group releases the
new version to a subset of users for up to two
weeks before rolling it out to the rest of the users.

46 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Table 3. Node architectures of the three services studied.

Architecture Disks CPUs Network interface Memory
Online

Worker node Two 40-Gbyte disks Two 300-MHz Sparc 100-Mbps Ethernet 1 Gbyte
Proxy cache node Two 18-Gbyte disks Two 550-MHz x86 100-Mbps Ethernet 1 Gbyte

Content
Metadata server node One 30-Gbyte disk Two 844-MHz x86 100-Mbps Ethernet 512 Mbytes
Storage server node Six 40-Gbyte disks Two 550-MHz x86 100-Mbps Ethernet 256 Mbytes

ReadMostly
Service node Two 100-Gbyte disks Two 750-MHz x86 100-Mbps Ethernet 512 Mbytes

This testing and deployment methodology inte-
grates the operations team from the very begin-
ning, considering operators as first-class users of
the software as much as end users.

Deployment
Deploying software to large clusters requires
automation for both efficiency and correctness.
The three services use tools developed in-house to
deploy and upgrade production software and con-
figurations for applications and operating systems.
They all use rolling upgrades to deploy software to
their clusters.1 All three use version control dur-
ing software development, and Online and Read-
Mostly use it to manage configuration as well.
Online always keeps two versions of the service
software installed on every machine, allowing
administrators to revert to an older version in less
than five minutes if a new installation goes awry.

Daily Operation
Service monitoring, problem diagnosis, and repair
are significant challenges for large-scale Internet
services. Reasons for this include

� frequency of software and configuration
changes,

� scale of the services,
� unacceptability of taking the service down to

localize and repair problems,
� complex interactions between application

software and configuration, operating system
software and configuration,

� collocation site networks,
� networks connecting customer sites to the

main service site,
� networks connecting collocation sites, and
� operators at collocation sites, Internet service

providers, and the service’s operations center.

Back-end data partitioning presents a key chal-
lenge to maintainability. Data must be distributed
among back-end storage nodes to balance load
and to avoid exceeding server storage capacity. As
the number of back-end machines grows, opera-
tors generally repartition back-end data to incor-
porate the new machines. Currently, humans make
partitioning and repartitioning decisions, and the
repartitioning process is automated by tools that
are at best ad hoc.

The scale, complexity, and speed of Internet ser-
vice evolution leads to frequent installations,
upgrades, problem diagnosis, and system compo-
nent repair. These tasks require a deeper under-

standing of the internals of the application soft-
ware than is required to install and operate slow-
ly evolving, thoroughly documented enterprise or
desktop software. The Internet services we studied
encourage frequent dialogue between operators
and developers during upgrades, problem diagno-
sis, and repair — for example, when distinguish-
ing between an application crash caused by a soft-
ware bug (generally the responsibility of software
developers) and an application crash caused by a
configuration error (generally the responsibility of
the operations team). As a result, these services
intentionally blur the line between “operations”
and “software development” personnel.

Despite automated tasks such as monitoring and
deploying software to a cluster, human operators
are key to service evolution and availability. More-
over, because an operator is as much a user of
Internet service software as is an end user, devel-
opers should integrate operator usability through-
out the software development process. This is
especially true because many operational tasks are
not fully automated or not automated at all — such
as configuring and reconfiguring software and
network equipment, identifying a problem’s root
cause, and fixing hardware, software, and net-
working issues. Conversely, much opportunity
exists for more sophisticated and standardized
problem diagnosis and configuration management
tools, as all of the services we surveyed used some
combination of their own customized tools and
manual operator action for these tasks.

Characterizing Failures
Our architectural and operational study reveals per-
vasive use of hardware and software redundancy at
the geographic and node levels, and 24/7 operations
centers staffed by personnel who monitor and
respond to problems. Nonetheless, outages at large-
scale Internet services are relatively frequent.

Because we are interested in why and how
large-scale Internet services fail, we studied indi-
vidual problem reports rather than aggregate
availability statistics. The operations staff of all
three services uses problem-tracking databases to
record information about component and service
failures. Online and Content gave us access to
these databases; ReadMostly gave us access to
their problem post mortem reports.

Component and Service Failures
We define a component failure as a failure of some
service component to behave as expected — a hard
drive failing to spin up when it is power-cycled, a

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 47

Large-Scale Internet Services

software crash, an operator misconfiguring a net-
work switch, and so on. A component failure caus-
es a service failure if it theoretically prevents an
end user from accessing the service or a part of the
service (even if the user receives a reasonable error
message) or if it significantly degrades a user-vis-
ible aspect of system performance. We say “theo-
retically” because we infer a component failure’s
impact from various aspects of the problem report,
such as the components that failed and any cus-
tomer complaint reports, combined with knowl-
edge of the service architecture.

We studied 18 service failures from Online (based
on 85 component failures), 20 from Content (based
on 99 component failures), and 21 from ReadMost-
ly. The problems corresponded to the service fail-
ures during four months at Online, one month at
Content, and six months at ReadMostly. A detailed

analysis of this data appears elsewhere; 7 here we
highlight a few data attributes from Content and
ReadMostly.

We attributed a service failure to the first com-
ponent that failed in the chain of events leading
to the failure. We categorized this root-cause com-
ponent by location (front end, back end, network,
unknown) and type (node hardware, node soft-
ware, network hardware, network software, oper-
ator, environment, overload, and unknown). Front-
end nodes are initially contacted by end user
clients and, at Content, by client proxy nodes.
front-end nodes do not store persistent data, but
they may cache data. back-end nodes store persis-
tent data. We include the “business logic” of tra-
ditional three-tier system terminology in our front-
end definition because these services integrate
their service logic with the code that receives and
replies to user client requests.

Using Content data, we observe that the rate at
which component failures turn into service fail-
ures depends on the reason for the original prob-
lem, as Figure 4 shows. We list only those cate-
gories for which we classified at least three
component failures (operator error related to node
operation, node hardware failure, node software
failure, and network failure of unknown cause).

Most network failures have no known cause
because they involve Internet connections, prob-
lems between collocation facilities, or between
customer proxy sites and collocation facilities. For
all but the node operator case, 11 percent or fewer
component failures became service failures. Fully
half of the 18 operator errors resulted in service
failure, suggesting that operator errors are signif-
icantly more difficult to mask using existing high-
availability techniques such as redundancy. Table
4 lists service failures by type.

Observations
Our analysis of the failure data so far leads us to
several observations. First, operator error is the
largest single root cause of failures for Content,
and the second largest for ReadMostly. In general,
failures arose when operators made changes to the
system — for example, scaling or replacing hard-
ware or reconfiguring, deploying, or upgrading
software. Most operator errors occurred during
normal maintenance, not while an operator was in
the process of fixing a problem. Despite the huge
contribution of operator error to service failures,
developers almost completely overlook these errors
when designing high-dependability systems and
the tools to monitor and control them.

48 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Table 4. Failure cause by type for Content
and ReadMostly (in percentages).

Error type Content ReadMostly

Node operator 45 5
Network operator 5 14
Node hardware 0 0
Network hardware 0 10
Node software 25 5
Network software 0 19
Unknown node error 0 0
Unknown network error 15 33
Environment 0 0

Component failure
System failure

45

40

35

30

25

20

15

10

5

0
Node operator Node hardware Node software Net unknown

18

9

4

0

41

5

27

3

N
um

be
r

of
 in

ci
de

nt
s

Figure 4. Component failures and resulting service failures for Con-
tent site. For all categories but node operator, 11 percent or fewer
component failures led to a service failure.

Second, existing high-availability techniques
such as redundancy almost completely masked
hardware and software failures in Content and
ReadMostly. Networks, however, are a surprising-
ly significant cause of problems, largely because
they often provide a single point of failure. Read-
Mostly, for example, was the only service that used
redundant first- and second-level switches within
clusters. Also, consolidation in the collocation and
network provider industries has increased the like-
lihood that “redundant” networks will actually
share a physical link or switch fairly close (in
terms of Internet routing topology) to the colloca-
tion site. And because most services use a single
network operations center, they sometimes cannot
see the network problems between collocation sites
or between collocation sites and customers; these
problems can be the root of mysterious perfor-
mance problems or outages.

Finally, an overarching difficulty in diagnos-
ing and fixing problems in Internet services
relates to the fact that multiple administrative
entities must coordinate their problem-solving
efforts. These entities include the service’s net-
work operations staff, its software developers, the
operators of the collocation facilities that the ser-
vice uses, the network providers between the ser-
vice and its collocation facilities, and sometimes
the customers. Today this coordination is handled
almost entirely manually via telephone calls or
e-mails between operators.

Tools for determining the root cause of prob-
lems across administrative domains are rudimen-
tary — traceroute, for example — and they gener-
ally cannot distinguish between types of problems,
such as end-host failures and problems on the net-
work segment where a node is located. Moreover,
the administrative entity that owns the broken
hardware or software controls the tools for repair-
ing a problem, not the service that determines the
problem exists or is most affected by it. This
results in increased mean time to repair.

Clearly, tools and techniques for problem diag-
nosis and repair across administrative boundaries
need to be improved. This issue is likely to become
even more important in the era of composed net-
work services built on top of emerging platforms
such as Microsoft’s .Net and Sun’s SunOne.

Conclusions
The research we describe here opens a number of
avenues for future research for members of the
dependability community. Studying additional ser-
vices and problem reports would increase the sta-

tistical significance of our findings with respect to
failure causes and service architectures. Studying
additional metrics such as Mean Time to Repair
and/or the number of users affected by a failure
would provide a view of service unavailability that
more accurately gauges user impact than does the
number-of-outages-caused metric we use here.
Finally, one might analyze failure data with an eye
toward identifying the causes of correlated failure,
to indicate where additional safeguards might be
added to existing systems.

References

1. E. Brewer, “Lessons from Giant-Scale Services, IEEE Inter-

net Computing, vol. 4, no. 4, July/Aug. 2001, pp. 46-55.

2. Microsoft TechNet, “Building Scalable Services,” tech. report,

www.microsoft.com/technet/treeview/default.asp?url=/

TechNet/itsolutions/ecommerce/deploy/projplan/bss1.asp,

2001.

3. J. Gray, “Why Do Computers Stop and What Can Be Done

About It?” Proc. Symp. Reliability in Distributed Software

and Database Systems, IEEE CS Press, Los Alamitos, Calif.,

1986, pp. 3-12.

4. D. Kuhn, “Sources of Failure in the Public Switched Tele-

phone Network,” Computer, vol. 30, no. 4, Apr. 1997, pp.

31-36.

5. B. Murphy and T. Gant, “Measuring System and Software

Reliability Using an Automated Data Collection Process,”

Quality and Reliability Eng. Int’l, vol. 11, 1995, pp. 341-353.

6. J. Xu, Z. Kalbarczyk, and R. Iyer, “Networked Windows NT

System Field Failure Data Analysis,” Proc. 1999 Pacific

Rim Int’l Symp. Dependable Computing, IEEE CS Press, Los

Alamitos, Calif., 1999.

7. D. Oppenheimer, “Why Do Internet Services Fail, and What

Can Be Done about It?” tech. report UCB-CSD-02-1185,

Univ. of Calif. at Berkeley, May 2002.

David Oppenheimer is a PhD candidate in computer science

at the University of California at Berkeley. He received a

BSE degree in electrical engineering from Princeton Uni-

versity in 1996 and an MS degree in computer science

from the University of California at Berkeley in 2002. His

research interests include techniques to improve and

evaluate the dependability of cluster and geographically

distributed services.

David A. Patterson joined the faculty at the University of Cal-

ifornia at Berkeley in 1977, where he now holds the Pardee

Chair of Computer Science. He is a member of the Nation-

al Academy of Engineering and is a fellow of both the

ACM and the IEEE.

Readers can contact the authors at {davidopp,patterson}

@cs.berkeley.edu.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 49

Large-Scale Internet Services

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

