
An Active Approach to Characterizing
Dynamic Dependencies for Problem
Determination in a Distributed Environment

A. Brown* G. Kar, A. Keller
Computer Science Division, UC Berkeley IBM T.J. Watson Research Center
387 Soda Hall #1776 P.O. Box 704
Berkeley, CA 94720-1776, USA Yorktown Heights, NY 10598, USA
abrown@cs.berkeley.edu {gkar, alexk}@us.ibm.com

Abstract
We describe a methodology for identifying and characterizing dynamic dependencies
between system components in distributed application environments such as e-com-
merce systems. The methodology relies on active perturbation of the system to iden-
tify dependencies and the use of statistical modeling to compute dependency
strengths. Unlike more traditional passive techniques, our active approach requires
little initial knowledge of the implementation details of the system and has the poten-
tial to provide greater coverage and more direct evidence of causality for the depen-
dencies it identifies. We experimentally demonstrate the efficacy of our approach by
applying it to a prototypical e-commerce system based on the TPC-W web commerce
benchmark, for which the active approach correctly identifies and characterizes 41 of
42 true dependencies out of a potential space of 140 dependencies. Finally, we con-
sider how the dependencies computed by our approach can be used to simplify and
guide the task of root-cause analysis, an important part of problem determination.

Keywords
Application Management, Dependency Analysis, Problem Determination

1. Introduction
One of the most significant challenges in managing modern enterprise systems lies in
the area of problem determination—detecting system problems, isolating their root
causes, and identifying proper repair procedures. Problem determination is crucial for
reducing the length of system outages and for quickly mitigating the effects of perfor-
mance degradations, yet it is becoming an increasingly difficult task as systems grow
in complexity. This is especially true as the number of system hardware and software
components increases, since more components result in more places that the system
manager must examine in order to identify the cause of an end-user-reported problem,

*Work done while author was an intern at IBM T.J. Watson Research Center.

and also more paths by which the effects of problems can propagate between compo-
nents, masking the original root cause.

A promising approach to managing this complexity, and thereby simplifying
problem determination, lies in the study of dependencies between system hardware
and software components. Much work is evident in the literature describing the use of
dependency models for the important root-cause analysis stage of problem determina-
tion, that is, for the process of determining which system component is ultimately
responsible for the symptoms of a given problem. However, there has been little work
on the requisite task of automatically obtaining accurate, detailed, up-to-date depen-
dency models from a complex distributed system; most existing problem-determina-
tion work assumes the pre-existence of a manually-constructed dependency model, an
optimistic assumption given the complexity and dynamics of many of today’s enter-
prise and Internet-service systems. While there has been some work on automatically
extracting static, single-node dependencies [8], there does not appear to be an existing
solution for automatically detecting dynamic runtime dependencies, especially those
that cross system and domain boundaries.

This paper addresses this deficiency via a new technique for automatically identi-
fying and characterizing dynamic, cross-domain dependencies. Our technique differs
considerably from traditional dependency-detection techniques by taking an active
approach—explicitly and systematically perturbing system components while moni-
toring the system’s response. The results of these perturbation experiments feed into a
statistical model that is used to estimate dependency strengths. Compared to more tra-
ditional passive approaches based on knowledge discovery or learning algorithms,
our active approach has the potential to obtain evidence of dependencies faster, more
accurately, and with greater coverage. On the other hand, it is an invasive technique
and therefore requires much greater care in how it is applied to production systems.

We have implemented our Active Dependency Discovery (ADD) technique and
have applied the implementation to characterize a subset of the dependencies in a pro-
totype e-commerce environment based upon the TPC-W web commerce benchmark,
which simulates the behavior of an online bookseller’s web storefront [11]. In particu-
lar, we used the ADD approach to generate a dependency graph for each of 14 distinct
end-user interactions supported by the TPC-W environment; each such graph maps
the dependencies between one user interaction and the particular database tables upon
which that interaction depends. The results of these experiments reveal the power of
the active approach: without relying on knowledge of the implementation details of
the test system, our ADD technique correctly classified 139 of 140 potential depen-
dencies and automatically characterized their relative importances (strengths).

This paper describes our active technique, its experimental verification, and our
thoughts on how it can be used to assist in the root-cause-analysis phase of problem
determination. We begin in Sections 2 and 3 with an overview of dependency models,
their use in root-cause analysis, and related work. Next, Section 4 presents the details
of our active technique for the discovery of dynamic cross-domain dependencies. In
Section 5 we describe and discuss the results of our experimental validation of the

dependency-discovery technique in the context of the TPC-W web commerce envi-
ronment, and we conclude with pointers for future work in Section 6.

2. Dependency Models
The basic premise underlying dependency models is to model a system as a directed,
acyclic graph in which nodes represent system components (services, applications,
OS software, hardware, networks) and weighted directed edges represent dependen-
cies between nodes. A dependency edge is drawn between two nodes only if a failure
or problem with the node at the head of the edge can affect the node at the tail of the
edge; if present, the weight of the edge represents the impact of the failure’s effects on
the tail node. The dependency graph for a heavily simplified e-commerce environ-
ment is depicted in Figure 1.

Dependency graphs provide a straightforward way to identify possible root
causes of an observed problem—one must simply trace the dependency edges from
the problematic node (or entity) to discover all of the potential root causes. In the
example of Figure 1, the dependency graph reveals that a performance degradation in
the e-commerce application may be the result of a problem with the web service,
which in turn may have been caused by a problem occurring within the name service.
If weights are available on the dependency edges, as shown in the figure above, they
provide a means of optimizing the graph search, as heavier edges represent more sig-
nificant dependencies and therefore more likely root causes. We provide a detailed
discussion of using dependency models for problem determination in Section 5.6,
after first describing our active technique for obtaining such dependency models.

3. Related Work
There has been significant interest in the literature in using dependency models for
problem diagnosis and root cause analysis. Two main approaches stand out. The first
is in the context of event correlation systems, such as those described by Yemini
et al. [12], Choi et al. [2], and Gruschke [4]. In these systems, incoming alarms or
events are first mapped onto corresponding nodes of the dependency graph, then the
dependencies from those nodes are examined to identify the set of nodes upon which

Name Service IP Service

DB Service

OS

Web Application Service

Web Service

Customer e-Commerce Application
w1

w2 w3

w4 w5 w8

w7w6Name ServiceName Service IP ServiceIP Service

DB ServiceDB Service

OSOS

Web Application ServiceWeb Application Service

Web ServiceWeb Service

Customer e-Commerce ApplicationCustomer e-Commerce Application
w1

w2 w3

w4 w5 w8

w7w6

Figure 1: A sample dependency graph. Edge labels represent dependency strengths.

the most alarm/event nodes depend. These nodes are likely to be the root causes of the
observed alarms or events. The other main technique for using dependency models in
root-cause analysis is to use the model graph as map for performing a systematic
examination of the system in search of the root cause of a problem, as described by
Kätker in the context of network fault management [7].

Most of these dependency-based root cause analysis techniques do not consider
the details of how the required dependency models are obtained. We believe that for
such techniques to be effective, they must be supplied with high-quality dependency
models that reflect an accurate, up-to-date view of system state. Surprisingly, how-
ever, there is little existing work on the problem of automatically generating such
high-quality dependency models, especially at system levels above the network layer
and at the level of dynamic detail we believe necessary.

What little work there has been has focused on passive approaches to construct-
ing dependency models. Kar et al. describe a technique for automatically extracting
dependencies between software components within a given machine, based on data
contained in existing software deployment repositories [6]. While this technique is
effective for identifying static dependencies, it does not address the problem of
obtaining dynamic, operational dependencies—dependencies that arise or are acti-
vated during the runtime operation of the system. It is important that these dependen-
cies be modeled, as without them the overall dependency model reflects only a
generic view of how the system might potentially be used, rather than how it is actu-
ally being used. Furthermore, the approach in [6] does not consider the issue of iden-
tifying dependencies that cross machine boundaries, a key component required for
dependency models of realistic systems.

An interesting approach that does attempt to characterize both dynamic and
cross-machine dependencies is described by Ensel [3]. This approach provides indi-
rect evidence of dependencies and can detect dependencies that are exercised while
monitoring is active. It cannot, however, provide evidence of causality, only of corre-
lation, and thus cannot guarantee that the identified dependencies are real. In contrast,
our active perturbation-based approach provides evidence of causality and can detect
dependencies that rarely (or never) occur naturally during the monitoring period.

4. Detecting and Characterizing Operational Dependencies
4.1 Overview

Given the assistance that a detailed operational dependency model can provide to the
task of root cause analysis, it is natural to consider how such models might be con-
structed or automatically extracted from a real system. There are two basic
approaches that might be taken.

If the system is simple and its internal operation is well-understood, then a direct
approach can suffice. That is, for each task that a system component can perform, a
human expert can analytically compute the operational dependencies on other compo-
nents. However, this approach quickly breaks down when the system grows more

complex or when the source code and implementation details of the system are
unknown. In such real-life situations, a more indirect approach to dependency discov-
ery is needed, in particular one based on measurement and inference.

The essence of an indirect approach is to instrument the system and monitor its
behavior under specific use cases as failures and degradations occur. Dependencies
are revealed by correlating monitoring data and tracing the propagation of degrada-
tions and failures through the network of hardware and software components in the
system. Dependency strengths can be calculated by measuring the impact on the
dependent component of varying levels of degradation of the antecedent component.

The main challenges in any indirect approach are causality and coverage. Cau-
sality involves differentiating causal relationships indicating dependencies from sim-
ple correlations in monitoring data, whereas coverage implies collecting as much of
the dependency model as possible, especially including portions that might be
revealed only during faulty operation. There are several indirect approaches that can
be considered, but most do not sufficiently address these two challenges, typically
because they rely on various styles of postmortem time-correlation analysis per-
formed on monitoring data covering only a subset of the possible failure states (a
detailed discussion is beyond the scope of this paper). Thus, we choose to investigate
a novel active-perturbation approach in which we explicitly inject problems into the
system, monitor service behavior, and infer dynamic dependencies and their strengths
by analyzing the monitored data. This approach solves both challenges: the controlled
perturbation can be applied to every system component (providing full coverage), and
the knowledge of which component is being perturbed disambiguates cause and effect
(identifying causality). The following section explains our approach and sets up the
background for the specific perturbation experiments that we have conducted.

4.2 Active Dependency Discovery

This idea of using explicit system perturbation to elucidate dependencies is the crux
of a procedure that we denote Active Dependency Discovery (ADD). The ADD pro-
cedure builds an operational dependency graph for a particular combination of system
and workload while requiring very few details of the internal implementation of the
system. The procedure consists of four major steps: node/component identification,
system instrumentation, system perturbation, and dependency extraction.

Step 1: Identify the nodes in the operational dependency graph. In essence, this step
boils down to enumerating the hardware and software components in the system,
excluding only those components whose quality of service or potential for failure are
irrelevant to the system. The information for this first step can come from a variety of
sources: system deployment descriptions, inventory management systems like Tivoli
Inventory [9], or from coarser-grained dependency models such as the automatically-
generated structural models described by Kar et al. [6].

Step 2: Instrument the system. This involves establishing monitors for performance,
availability, and any other relevant metrics. The instrumentation can be at the level of
end-user-visible metrics, or can be placed throughout the various levels of the system.

Step 3: Apply active perturbation to the system in order to unveil its dependencies.
The step begins by applying a workload to the system; the workload can either be a
representative mix of what would be seen in production operation, or a targeted work-
load designed to explore dependencies corresponding to one component of the pro-
duction workload. As the workload is applied, components of the system are
perturbed at varying levels of intensity while the system instrumentation is used to
record the system’s behavior, performance, and availability.

A key decision to make when implementing the perturbation step lies in the
selection of perturbation patterns, that is, what components should be perturbed and
in what order. A good starting point is to systematically perturb every component in
the system, one component at a time. If there exists some a priori knowledge of the
structure of the dependency graph (for example, if the nodes were obtained from a
static dependency model), then this graph can simply be traced from leaves to root to
obtain a perturbation ordering; otherwise, the ordering may be arbitrary. More com-
plex perturbation patterns involving multiple components can also be used to uncover
dependencies on replicated or redundant components.

Step 4: Analyze perturbation data and extract dependency information. This is done
with a combination of standard statistical modeling/regression techniques and simple
graph operations. First, for each instrumented system component or metric, a statisti-
cal model is constructed that relates the measured values of that metric to the levels of
perturbation of the various system components. These models are used to identify
potential dependencies and to estimate their strengths: if the effect of a perturbation
term is statistically significant, then we assume the existence of a dependency
between the instrumented entity and the entity corresponding to the perturbation term;
the value of the effect (the coefficient of the perturbation term in the model) is then
taken as the dependency strength.

Given these statistical models, an operational dependency graph can be built by
taking the set of nodes obtained in the first ADD step and adding directed edges cor-
responding to the statistically-significant dependencies identified by the models.

The active dependency discovery procedure provides a straightforward, easily-
automated method of obtaining an operational dependency model for a given system.
However, there are several issues that arise when considering practical deployment of
ADD. We will consider the two most important here.

First, the ADD procedure is workload-specific, and produces dependency models
that reflect the operation of the system under the workload used during the perturba-
tion experiments. This can hinder use of the dependency model in problem determi-
nation if the workload present when the problem occurs does not match that used
when constructing the model. One solution is to build a dependency model for each of
the components of a system’s workload, then select the most appropriate model based
on the work in progress when a problem occurs. This is the approach we will take in
the experiments of Section 5.

Second, and more importantly, the ADD procedure is invasive. Because ADD is
based on perturbation, the procedure can noticeably impact the behavior, perfor-

mance, and availability of the system while it is in progress. While this degradation is
unacceptable in a production environment, it can be avoided or masked by running
the perturbation as part of a special characterization period during initial system
deployment, during scheduled downtime, or on a redundant/backup component dur-
ing production use. Alternately, it may be possible to develop techniques for low-
grade perturbation that could allow the ADD procedure to run (albeit slowly) during
off-peak periods of production operation.

Finally, although we believe that the ADD procedure can be entirely automated,
our description and implementation still rely on some manual intervention, in particu-
lar in designing and placing the measurement and perturbation points (although the
statistical analysis to extract dependencies is fully automated). This is of particular
concern for multi-tier systems, in which monitoring and perturbation may need to be
placed at each tier-boundary in the system. Further research is needed to gauge
whether an automated ADD system could use existing inter-tier interfaces for these
purposes, or whether manual instrumentation will remain a requirement.

To illustrate the working of ADD we will use the example shown in Figure 2.
Here the dependency edge represented by label w3 in Figure 1 has been expanded to
include the operational dependency edges (i.e., those that come into play at runtime)
between the web application service and the database service. We have also broken
out the web application service into multiple nodes reflecting the different workload
components (e.g., user operations or transaction types) that could be applied to the
system.* The goal of ADD is to (a) discover these operational dependencies and (b)
estimate values of their strengths, denoted by s1, s2, etc. in Figure 2.

5. Experimental Validation of ADD
5.1 Overview

In order to validate ADD’s effectiveness, we chose to implement the procedure in the
context of a small but fully-functional web-based e-commerce environment. In partic-
*The overall dependency strength w3 represents a weighted average of the strengths of the operational
dependency edges (s1, s2, etc.), with the weights determined by the typical applied workload.

Figure 2: Operational dependencies between web application service, database ser-
vice and internal database tables, broken down by workload component.

IBM DB2 EEE cluster
ORDERS

SHOP_CART

CUSTOMER

...

node1

node2

nodeN

...
Database Service

Apache Tomcat +
myWebStorefront

Web Application
Service op1

op2

opN

...

workload

s1
s2

s3

s4
s5

IBM DB2 EEE cluster
ORDERS

SHOP_CART

CUSTOMER

...

node1

node2

nodeN

...
Database Service

IBM DB2 EEE cluster
ORDERSORDERS

SHOP_CARTSHOP_CART

CUSTOMERCUSTOMER

...

node1node1

node2node2

nodeNnodeN

...
Database Service

Apache Tomcat +
myWebStorefront

Web Application
Service

Apache Tomcat +
myWebStorefront

Web Application
Service op1

op2

opN

...

op1

op2

opN

...

workload

s1
s2

s3

s4
s5

ular, following the specification in the industry-standard TPC-W web commerce
benchmark, we built a three-tier testbed system implementing an on-line storefront
application for a fictitious Internet bookseller. The goal of our experiments was to use
ADD to identify and characterize operational dependencies in this environment, to be
used as an aid in problem determination, in, for example, e-commerce systems.

The dependencies that we chose to investigate were those between the storefront
service/application and individual tables in the back-end database, similar to the
labeled dependencies in Figure 2. In particular, we built operational dependency mod-
els for each of fourteen different types of user interaction with the storefront service;
the computed dependencies in each model indicated which database tables were
needed to process the associated user request, and the strengths of those dependencies
characterized the importance of each of those tables to the user request. This is a par-
ticularly appropriate set of dependencies to study for these first experiments, as the
discovery problem is reasonably challenging, yet the results are easily validated by
examining the application’s source code.

5.2 Testbed environment

Our primary goal in constructing our testbed environment was to make it as realistic
as possible given the constraints of our available hardware and software. A major
requirement was therefore that the testbed implement a service or application that was
as close as possible to one that might be deployed in real life. To address this require-
ment, we chose an application based on the specification supplied with the TPC-W
web commerce benchmark. TPC-W is a respected industry-standard benchmark
released by the Transaction Processing Performance Council, and is designed to sim-
ulate the operation of a realistic “business-oriented transactional web server” [11]. It
includes both the specification for a fictitious Internet bookseller storefront applica-
tion as well as a detailed specification for generating a reproducible user workload
that is designed to be representative of actual user traffic patterns. Note that TPC does
not supply an implementation of the TPC-W benchmark; we used a Java implementa-
tion developed by the University of Wisconsin, which included the application busi-
ness logic, the workload generator, and a database population tool [1] [10].

The TPC-W storefront comes very close to our goal of deploying a realistic ser-
vice. It includes all of the required components for an e-commerce application: a web
interface, reasonably sophisticated business logic (including catalog searches, user-
based product recommendations, “best-sellers”, etc.), and a large back-end database.

Our TPC-W testbed system was organized in typical multi-tier fashion, with a
web browser client tier, a web server front-end tier, a middleware tier, and a back-end
database tier. The middle tier implemented the application’s business logic via Java
servlets deployed in a web application server [5]. The system was partitioned across
three machines, with the web server and application server sharing a machine. The
Wisconsin TPC-W implementation was installed on the system and configured with
scale parameters of 10 000 items in the database and 50 expected simultaneous users.
The 10 database tables and the web server’s static image repository were populated
with synthetic data according to the TPC-W specification.

5.3 Workload and perturbation

During all of our experiments, we applied the standard TPC-W “shopping” workload
mix, designed to mimic the actions of typical Internet shoppers with a combination of
roughly 80% browsing-type interactions and 20% ordering-type interactions. There
are a total of 14 possible user interactions with the TPC-W environment, all of which
were present in the workload mix, and as noted above our goal was to generate an
operational dependency model for each of the 14 types of interaction.

The workload mix was applied using the Wisconsin-supplied Remote Browser
Emulator (RBE), a threaded Java-based workload generator. We applied a load of 90
concurrent users; each simulated user carried out state-machine-based sessions with
the server according to the distributions specified in the shopping mix. The server was
not significantly saturated during the experiments. The workload generator recorded
the start time and the response time for each simulated user interaction carried out
during the experiments. User think time was simulated according to the specification.

A crucial part of our experiments was the perturbation of the system. As intro-
duced above, our goal was to establish dependencies on the particular tables in the
TPC-W back-end database, and as such we needed a way to perturb those tables. Our
solution was to perturb the tables by introducing lock contention via a DB2 command
that exclusively locks a particular table against any accesses by other transactions.
This effectively denies access to the locked table, forcing other transactions and que-
ries to wait until the table lock has been released and thereby perturbing their execu-
tion. We toggled the exclusive lock on and off during execution, with a full cycle time
of 4 seconds and a duty cycle determined by the requested degree of perturbation. The
table perturbation was managed by a Java client we developed that allows for multi-
ple simultaneous perturbation of different database tables and for varying levels of
perturbation over the course of the experiments.

5.4 Results

We carried out a sequence of 11 experiments to extract the dependencies in our test-
bed system. The first experiment characterized the normal behavior of the system: we
applied the TPC-W shopping workload mix for 30 minutes and measured the
response time of each transaction generated from the workload mix. The remaining
10 experiments investigated the effects of perturbation on each of the 10 tables in the
TPC-W storefront’s back-end database. In each of these experiments, we applied the
TPC-W shopping workload mix for two hours while perturbing one of the 10 data-
base tables. For the first half-hour, the perturbation level was set at 25%; in the
remaining three 30-minute periods, the perturbation levels were set at 50%, 75%, and
99%, respectively.

We begin our discussion of the results of these experiments by examining some
data that illustrates the power of our perturbation technique. Figure 3 shows two
graphs that plot the response times for one particular user transaction under different
levels of perturbation for two database tables. We know a priori that this transaction
depends on the ITEM and AUTHOR tables. The left-hand graph, Figure 3(a), shows the

response time for this transaction when an uninvolved table, CC_XACTS (holding
credit card transaction data), is perturbed, whereas the right-hand graph, Figure 3(b),
shows the response time behavior when the ITEM table is perturbed. Notice that there
is a clear difference between the graphs: the left-hand graph displays no discernible
indication that the response time varies with different perturbations of the uninvolved
table, whereas the right-hand graph shows a clear shift in the response time distribu-
tion as the involved table (ITEM) is perturbed at increasing levels. This data directly
suggests the presence and absence of dependencies for this transaction type: the evi-
dent shifts in distribution in the right-hand graph reveal an apparent dependency on
the ITEM table, while the lack of such shifts in the left-hand graph excludes the possi-
bility of a dependency on the CC_XACTS table.

5.5 Data analysis

While visual inspection of scatter plots such as those in Figure 3 is effective in detect-
ing dependencies, it is not especially efficient, nor does it provide a numerical charac-
terization of the dependency strength. We would prefer to be able to identify and
measure dependencies automatically by applying statistical modeling techniques, as
described below. However, there are some obstacles to overcome in performing the
modeling, notably the distribution of the data and the sheer number of data points. As
can be seen in Figure 3(b), the data distribution shifts from a clearly heavy-tailed dis-
tribution in the case of no perturbation to a more evenly distributed block under
higher perturbation levels. The variance also increases significantly with the perturba-
tion level. We addressed both of these problems (along with the sheer number of data
points) by summarizing the data for each perturbation level as a simple mean of the
logs of the original response times. This reduces the number of data points from
approximately 14000 to 5 and makes the distribution more close to normal via the
central limit theorem. As a side effect, it also appears to linearize the data quite well.

With the data thus reduced and linearized, it becomes easy to fit a regression line
relating the mean log response time to the perturbation level. The regression line is
the key to automatically identifying and characterizing dependencies: a statistically

Figure 3: Raw response times for the TPC-W “execute search” transaction under
various levels of perturbation. Within each perturbation level, values are plotted in
increasing order of transaction start time.

ITEM Perturbation level, time

R
es

po
ns

e
tim

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0% 25% 50% 75% 99%

(b)
CC_XACTS Perturbation level, time

R
es

po
ns

e
tim

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0% 25% 50% 75% 99%

(a)

nonzero slope for this line indicates the existence of a dependency, and the magnitude
of the slope characterizes its strength. More formally, consider a first-order linear
regression model of the form:

where i indexes the transaction type (1, . .. , 14), rik is the value of the mean log
response time for the k’th execution of the i’th transaction type, j indexes the 10 data-
base tables, Pj is the level of perturbation of table j, is the mean log response time
in the unperturbed state, and is the effect of the perturbation of table j on the mean
log response time for transaction i, and corresponds to the slope of the regression line.

If such a model fits the measured data well, then we can use the terms as
direct measures of the dependencies of transaction type i on table j. Specifically, if

 is statistically non-zero (at, say, the 95% confidence level), then we conclude that
transaction type i depends on table j with a strength of .

As an example, let us consider the data collected for a different user transaction,
in this case the “buy request” transaction. A user executes this transaction by clicking
the “checkout” button, indicating that they are ready to purchase the contents of their
virtual shopping cart. Figure 4 plots the mean log response times for this transaction
for four cases, corresponding to the perturbation of four different tables: ITEM,
ADDRESS, COUNTRY, and AUTHOR. It also plots the fitted model results as dashed
lines. For reference, the correlation coefficient for the fit was R2 = 0.983. As can be
seen in the figure, there are clear differences in slopes between the various lines. One
line (corresponding to the AUTHOR table) has a slope that is very close to zero—in
this case, we assume that there is no dependency here on the AUTHOR table. The other
three lines, however, have positive slopes (3.31, 2.49, and 1.98, respectively), indicat-
ing dependencies. From the differences in slope, we draw the conclusion that the

rik µi αijPj εik+ εik N 0 σi,()∼,
j 1=

10

∑+= (1)

µi
αij

αij

αij
αij

Perturbation level
0.00 0.25 0.50 0.75 0.99

M
ea

n
lo

g
re

sp
on

se
 ti

m
e

4

5

6

7

8

9
ITEM
ADDR
COUNTRY
AUTHOR

Figure 4: Mean log response times for the TPC-W “buy request” transaction for
varying levels of perturbation of four database tables. Each of the four plots corre-
sponds to the perturbation of a single database table. The dashed lines are regression
lines obtained by fitting a first-order linear model of the form of (1) to the data.

dependencies have different strengths, with the ITEM table having the strongest
dependency, followed by the ADDRESS table and the COUNTRY table, in order.

If we consider all of the transaction types and tables defined by TPC-W, there are
140 potential dependencies—what might be claimed as dependencies based on a
static analysis of the system. Referring back to Figure 2, these potential dependencies
would be obtained by adding edges from each workload component of the application
server to every table in the database. It is unlikely that all of these dependency edges
would be present in practice, and in fact in our TPC-W case study, our application of
the ADD technique identified only 41 of the potential 140 as true dependencies.

To verify this result, we carried out a detailed (and time-consuming) manual
analysis of the source code of the TPC-W business logic to directly determine the true
dependencies. From this manual analysis, we found that there were a total of 42 true
dependencies in the system, of which the ADD procedure correctly identified 41, with
the one misclassification due only to insufficient monitoring data. Thus we can con-
clude that in this case the ADD procedure performed remarkably well, correctly clas-
sifying 139 of 140 potential dependencies in an easily-automated procedure.

5.6 Application of ADD to Problem Determination

Figure 5 depicts in tabular form the operational dependencies discovered by applying
ADD to the TPC-W system. The information content in the figure is identical to what
would be included in a standard graph representation of the calculated operational
dependency models. Visualizing the dependencies in this manner is suggestive of how
useful operational dependency models might be for assisting in root-cause analysis.

For example, say that the system manager for this fictitious e-commerce store-
front receives a report from a client that the system is not performing correctly (this
report might take the form of a service-level agreement violation report). He or she

A
D

M
C

N
F

A
D

M
R

E
Q

B
E

ST S
E

L
L

B
U

Y
C

O
N

F

B
U

Y
R

E
Q

C
U

ST R
E

G

H
O

M
E

N
E

W
P

R
O

D

O
R

D
R D

IS
P

O
R

D
R IN

Q

P
R

O
D

D
E

T

S
R

C
H

R
E

Q

E
X

E
CS

R
C

H

S
H

O
PC

A
R

T

ADDRESS + # #
AUTHOR + * * # X #
CC_XACTS + #
COUNTRY + * *
CUSTOMER * # # #
ITEM * # * # X # # # X X # X
ORDERLINE -- + * #
ORDERS * * # X
SHOPCART #
SHOPCARTLINE * # #

Figure 5: Summary of operational dependencies discovered by applying ADD to the
TPC-W system. The 14 TPC-W transaction types are listed across the top, the 10
TPC-W database tables down the side. A non-empty box at the intersection of a
transaction and table indicates that the transaction depends on the table. The symbols
represent the dependency strengths: X ∈ (3,4], # ∈ (2,3], * ∈ (1,2], + ∈ (0,1].

can then take the following steps to narrow down the root cause:
1. Identify the faulty transaction, from the problem report or via test transactions.
2. Find the appropriate column in a table like that of Figure 5.
3. Select the rows representing dependencies. This gives the set of potential root

causes and their weights
4. Investigate the potential root causes, starting with those with highest weight.

Unfortunately, this procedure may not uniquely identify the root cause of a problem.
However, notice that the tabular representation of dependency data in Figure 5 is sug-
gestive of a matrix. Consider a “basis” for the dependency space—a set of user trans-
actions that, taken in different combinations, provides a way to isolate the effects of
specific tables. For example, in Figure 5, notice that if we “subtract” the ORDERDISP
dependencies from the BUYCONF dependencies, we are left with just a dependency on
the SHOPCARTLINE table. If we could find sets of transactions that gave us a basis for
all tables, we could use performance results from the basis set of transactions to
uniquely isolate the faulty table. For example, the case above, if we knew that BUY-
CONF transactions were slow, but ORDERDISP transactions were running normally, we
would know immediately that the problem was in the SHOPCARTLINE table.

In our TPC-W example, such a basis does not exist. However, as future work, we
plan on extending the application with some extra business logic to define some syn-
thetic transactions that would complete the basis set. This would provide us the extra
power needed to do automatic root-cause analysis for the portion of the system mod-
eled in the dependency graphs. When extended to a complete system model (rather
than restricted to database tables as in our experiments), automated dependency anal-
ysis based on this extension to our ADD approach could offer a significant improve-
ment to the state-of-the-art in problem determination.

6. Conclusions and Future Work
We have introduced active dependency discovery (ADD), a novel technique for deter-
mining dynamic, operational dependencies between services and components in dis-
tributed system environments, and have demonstrated its effectiveness in a small-
scale but realistic case study. ADD differs significantly from most existing techniques
in this area in that it relies on active perturbation of the system. While this is an inva-
sive technique, it is also quite powerful, accurately revealing dependencies between
components, characterizing their strengths, and conclusively identifying causality.

An efficient and accurate procedure for discovering a distributed system’s opera-
tional dependency graph is a key component of several proposed problem determina-
tion and root-cause-analysis techniques, which are themselves key components of the
system management problem. ADD provides such a procedure, and furthermore has
the potential of improving on existing root-cause-analysis techniques by providing
more accurate and complete dependency information, providing dependency strength
information to optimize the search for root causes, and by forming the foundation for
potential extensions that use our notion of an operation “basis” to automatically and
precisely isolate root causes of observed problems.

However, the work described in this paper is only an initial step in probing the
potential power and applicability of the ADD technique. Before ADD can be practi-
cally deployed, a host of open research issues must be resolved. Most importantly,
techniques must be developed for integrating ADD’s perturbation into production use
in a non-disruptive manner, potentially via low-grade perturbation techniques or
hybrid active/passive approaches. ADD must also be verified and extended for more
complex e-commerce environments than TPC-W; in particular, the tradeoffs between
end-to-end and layer-by-layer application of ADD must be examined, especially in
systems using shared queuing to decouple their tiers. Finally, further research is
needed to determine how to best use ADD-discovered dependency models for man-
agement tasks; promising directions include automated model-based root-cause anal-
ysis, and even the use of dependency strengths for system performance optimization.

References
[1] T. Bezenek, T. Cain et al., “Characterizing a Java Implementation of TPC-W,” in

Third Workshop on Computer Architecture Evaluation Using Commercial Work-
loads, Toulouse, France, 2000.

[2] J. Choi, M. Choi, and S. Lee, “An Alarm Correlation and Fault Identification
Scheme Based on OSI Managed Object Classes,” in 1999 IEEE International
Conference on Communications, Vancouver, BC, Canada, 1999, pp. 1547–51.

[3] C. Ensel, “Automated Generation of Dependency Models for Service Manage-
ment,” in Workshop of the OpenView University Assoc., Bologna, Italy, 1999.

[4] B. Gruschke, “Integrated Event Management: Event Correlation Using Depen-
dency Graphs, in Proceedings of 9th IFIP/IEEE International Workshop on Dis-
tributed Systems Operation & Management (DSOM ’98), 1998.

[5] The Apache Jakarta Project, http://jakarta.apache.org.
[6] G. Kar, A. Keller, and S. Calo, “Managing Application Services over Service

Provider Networks: Architecture and Dependency Analysis,” in Proceedings of
the Seventh IEEE/IFIP Network Operations and Management Symposium
(NOMS 2000), Honolulu, HI, 2000.

[7] S. Kätker and M. Paterok, “Fault Isolation and Event Correlation for Integrated
Fault Management,” in Fifth IFIP/IEEE International Symposium on Integrated
Network Management (IM V), San Diego, CA, 1997, 583–596.

[8] A. Keller and G. Kar, “Dynamic Dependencies in Application Service Manage-
ment,” in 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, 2000.

[9] Tivoli, Inc., “Tivoli Inventory,” http://www.tivoli.com/products/index/inventory/.
[10] “TPC-W in Java,” http://www.ece.wisc.edu/~pharm/tpcw.shmtl.
[11] TPC Benchmark W Specification v1.0.1, Transaction Processing Performance

Council, San Jose, CA, 2000, http://www.tpc.org/wspec.html.
[12] S. Yemini, S. Kliger et al., “High Speed and Robust Event Correlation,” IEEE

Communications Magazine, vol. 34, no. (5), pp. 82–90, May 1996.

	Abstract
	Keywords
	1. Introduction
	2. Dependency Models
	Figure 1: A sample dependency graph. Edge labels represent dependency strengths.

	3. Related Work
	4. Detecting and Characterizing Operational Dependencies
	4.1 Overview
	4.2 Active Dependency Discovery
	Figure 2: Operational dependencies between web application service, database service and internal...

	5. Experimental Validation of ADD
	5.1 Overview
	5.2 Testbed environment
	5.3 Workload and perturbation
	5.4 Results
	Figure 3: Raw response times for the TPC-W “execute search” transaction under various levels of p...

	5.5 Data analysis
	Figure 4: Mean log response times for the TPC-W “buy request” transaction for varying levels of p...

	5.6 Application of ADD to Problem Determination
	Figure 5: Summary of operational dependencies discovered by applying ADD to the TPC-W system. The...

	6. Conclusions and Future Work
	References

