
FIG: A Prototype Tool for Online Verification of Recovery
Mechanisms ∗

Pete Broadwell
University of California,

Berkeley
Soda Hall

Berkeley, CA 94720

pbwell@cs.berkeley.edu

Naveen Sastry
University of California,

Berkeley
Soda Hall

Berkeley, CA 94720

nks@cs.berkeley.edu

Jonathan Traupman
University of California,

Berkeley
Soda Hall

Berkeley, CA 94720

jont@cs.berkeley.edu

ABSTRACT
Network applications of the future will require advanced mech-
anisms for automatic failure recovery in order to provide
an acceptable quality of service. Because of this require-
ment, there is a need for tools that can inject simulated
faults to verify a system’s fault detection and recovery meth-
ods. We present a set of objectives that such a fault injec-
tion tool must meet, and describe a prototype we have de-
veloped that meets these criteria. This tool, FIG, is capable
of selectively introducing and logging errors at the applica-
tion/library boundary on a running system.

Our expectation is that FIG will be used for software de-
velopment and verification, as well as for on-site testing of
production systems. We use a working version of this tool to
test the behavior of several common UNIX applications un-
der simulated failures and offer suggestions from these tests
on how to develop software with a higher degree of failure
recoverability.

Keywords
Fault injection, recovery-oriented computing, online testing,
glibc, extensibility

1. INTRODUCTION

1.1 Motivation
The highly complex and dynamic nature of the next gen-

eration of network applications will make developing and

∗This work was supported in part by the Defense Advanced
Research Project Agency of the Department of Defense, con-
tract no. DABT63-96-C-0056, the National Science Founda-
tion, grant no. CCR-0085899, NSF infrastructure grant no.
EIA-9802069, Alocity, Microsoft, and the California State
MICRO Program. The information presented here does not
necessarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS SHAMAN Workshop’02 New York, New York USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

administering these programs by traditional means imprac-
ticable. Efforts are currently underway to build adaptive,
self-managing capabilities into next-generation business net-
work and Internet applications [4], [7].

A vital component of such software adaptability is the
ability of a system to detect and recover quickly from irreg-
ularities in its operating environment. Recovery-Oriented
Computing [1], an ongoing project at the University of Cali-
fornia, Berkeley, is dedicated to researching new methods
for providing this type of recoverability in contemporary
Internet-based applications. One fundamental component
of a recovery-oriented design framework is the use of tools
that can introduce a variety of simulated faults into a run-
ning system in a controlled manner. These tools can then be
used to evaluate the effectiveness and integrity of recovery
methods.

Tools for simulating faults have long been used in the de-
velopment of fault-tolerant systems. In addition, they often
appear in the later phases of testing for commodity software
packages. However, fault injection is notably absent in the
development process of many Internet applications, due to
the abbreviated development cycle these projects tend to
adopt. As a result, the recovery methods in these programs,
if they exist at all, often go to market untested.

By advocating the development of enhanced failure recov-
ery techniques for Internet applications, recovery-oriented
computing makes the use of fault injection an integral part
of the software development cycle. Moreover, this philoso-
phy calls for the simulation of failure modes, such as user
error and excessive system load, that are not normally asso-
ciated with traditional fault-tolerant program development.

Possibly the most controversial aspect of fault injection
for recovery-oriented systems is the idea that there may be
benefits associated with introducing simulated faults at a
constant, low frequency into running, online production sys-
tems. Essentially, a system furnished with a suite of efficient
failure-recovery tools may actually see an increase in overall
availability if its fault-injection subsystem successfully ex-
poses latent software errors that would not otherwise have
been detected. This conjecture is based on research done on
complex systems in a variety of engineering fields, which in-
dicates that many large-scale failures are actually the result
of numerous small “latent” faults that go undetected during
early design and testing phases, but later combine to cause
a catastrophic failure [11].

Further discussion on the subject of latent errors is be-

yond the scope of this paper. However, consideration of
the issue yields the directive that fault injection tools for
recovery-oriented systems should be capable of running in
an unobtrusive manner on a production system.

1.2 FIG: Fault Injection in glibc
Given the criteria listed above, our goal was to develop a

lightweight, extensible prototype tool for testing the recov-
erability of software packages against a variety of external
failures. The result of our efforts is FIG, a tool that is capa-
ble of injecting and logging errors at the application/library
boundary with minimal configuration and run-time over-
head.

Currently, FIG runs on UNIX-like operating systems and
operates by interposing a library between the application
and other function libraries that intercepts calls from the ap-
plication to the system. When a call has been intercepted,
FIG then chooses, based on testing directives from a con-
trol file, whether to allow the call to complete normally or
to return an error that simulates a failure of the operating
environment.

We believe that FIG is a suitable prototype of the class of
fault injection tools called for in the recovery-oriented com-
puting philosophy. As described in Section 2, FIG is simple
to install, easy to enable or disable, and incurs a minimal
amount of overhead while running. It can be directed to test
a single application or a group of applications, and can ei-
ther introduce faults into a small, targeted group of system
functions to simulate the loss of a particular component, or
else inject a wide variety of faults to test the behavior of the
system under large-scale failures.

We hypothesize that the use of FIG as a development tool
will contribute to the genesis of recovery-oriented applica-
tions. If software authors use FIG as a tool for testing their
applications against failures in the system environment, the
result of their efforts will be programs that are more robust
and resilient. In addition, the use of FIG on a running pro-
duction system may expose software errors that were not
detected during testing, due to the differing natures of the
testing and production environments. This latter applica-
tion of FIG requires that the system must already have in
place recovery mechanisms like automatic failover in order
to mask the errors that FIG exposes.

1.3 Related Work
A wide variety of research work on fault injection already

exists in the software engineering and fault-tolerant comput-
ing fields, and it is important to examine these past projects
in order to establish where FIG stands in relation to them.
Three general categories of existing fault injection tools are
hardware-implemented fault injection, simulator-based fault
injection and software-implemented fault injection, known
as SWIFI. FIG is of the latter type.

Perusal of the “related work” sections of most papers on
SWIFI techniques for fault tolerance yields a virtual alpha-
bet soup of project names and acronyms, such as FIAT,
FERRARI, FINE, FTAPE, DOCTOR, MAFALDA, HY-
BRID, ORCHESTRA and GOOFI [2]. Most of these projects
were written to perform fault injection on a single hard-
ware/software platform. In some cases, this platform is a
real-time system that runs provably error-free software and
operates in an environment requiring minimal human inter-
action and maintenance. As a result, the majority of the

injected fault types are very low-level hardware faults, such
as processor or memory failures that may corrupt a process’s
data or run-time image.

By comparison, our fault injection tool is designed to
run on widely-used commodity platforms such as those sup-
ported by UNIX, and the types of failures we seek to inject
may better be described as “perturbations” of the operating
environment. These include problems caused by hardware
failures, misbehaving user processes, human operators and
system load spikes.

The body of research regarding these types of errors is
much more limited. The majority of such projects, like the
Ballista [8] and Fuzz [10] tools, seek to inject errors into a
software module only at the user interface level. This in-
terface level is perhaps the most obvious choice for targeted
testing, due to its high visibility and accessibility. However,
it does not include all of the interactions that take place
between an application and the surrounding software envi-
ronment.

Our model of fault injection is most similar to the ex-
panded model endorsed by Whittaker [13] and later imple-
mented in Holodeck [5], which calls for integrated testing of
interfaces other than the application’s external user inter-
face. Examples of such interfaces include interactions be-
tween an application and the operating system, or between
an application and other function libraries. A tool that can
inject faults at all of these possible interfaces is able to test
and verify the widest possible range of failure recovery mech-
anisms.

Other tools that are capable of providing a similar type of
fault injection framework include the SAN-based Mendosus
[9], as well as tools that modify a process’s run-time image
using the ptrace() function [3], or the /proc facility [6].
Generally, it has been our experience that FIG provides a
more configurable and flexible interface than these tools. For
example, the FIG configuration facilities (described below)
allow any program run in a given session to be subjected to
fault injection tests, while other tools often require that the
targeted software module be explicitly run at the same time
the fault injection tool is invoked.

A final note on related work is that the code instrumen-
tation tool Xept [12] is capable of handling most, if not all
of the error types that FIG can inject. Xept operates by in-
strumenting object code with extra routines that make sure
all possible return conditions from library calls are handled.
However, merely assuring the existence of such recovery code
does not guarantee that it actually can offer recoverability
from failures. Providing this guarantee is the primary goal
of FIG.

2. IMPLEMENTATION
We hope FIG will prove useful in many different environ-

ments, so we made extensibility and flexibility a key com-
ponent of its architecture. Our aim is for FIG to have low
impact in terms of both its effect on the instrumented pro-
gram (when not injecting faults) and the amount of effort
needed to configure it to perform the desired fault measure-
ments and injections.

2.1 FIG Architecture
Because FIG must instrument the interface between an

application and the operating system, we need a method of
inserting it between where the application makes a library

function call and where the call is serviced by the OS. In the
case of glibc calls, this point is the interface between the
application program and the glibc shared library.

The UNIX dynamic loader provides a method for inserting
code into this interface: by setting the LD PRELOAD envi-
ronment variable to point to the libfig.so library, we tell
the loader to load it at the head of the library list. Symbol
resolution proceeds from the head of the library list to the
tail, so any symbol in an earlier library will override an iden-
tically named symbol in a later one. Calls defined within the
FIG library, hereafter referred to as stubs, can thus override
the glibc routines they intend to instrument. In addition
to its simplicity, another benefit of this method is its ability
to instrument any shared library, not just glibc.

Since the FIG stubs override the corresponding glibc sym-
bols, we cannot make direct calls from libfig.so into glibc

in order to execute the original library function. We use one
of two methods to circumvent this limitation. Many sym-
bols in glibc have multiple definitions: two symbols point-
ing to the same code. In this case, we call the secondary,
non-overridden definition. For library functions without sec-
ondary definitions, we use the dlsym() routine to locate the
function’s code and call it indirectly through the returned
function pointer.

2.2 Automatic Stub Generation
In order to facilitate our development effort, we created a

mechanism for automatically creating stubs, which simplifies
the addition of new instrumented functions to FIG. The de-
veloper adds some information, such as the function’s name,
secondary symbol, and parameter names and types, to a list
of instrumented routines. Next, an AWK script generates
the stubs’ source code, which can then be built and linked
into a customized FIG library.

Only a handful of calls cannot use this automatic mecha-
nism. Some, like mmap() do not have secondary definitions,
while others, like malloc(), interact with the FIG control
logic and must be handled manually. Extending the stub
generator to handle these cases would be straightforward,
but may not be worthwhile if the number of such functions
is small.

2.3 The FIG Interface
FIG consists of two major components: the libfig.so li-

brary and the fig command line interface. The libfig.so

library implements system call interception and fault inser-
tion as described above. The fig program sets up the en-
vironment as needed by libfig.so and then executes the
program being tested. When the test program exits, fig

prints out timing information, similar to the UNIX time

utility.
The fig program also provides a convenient interface for

passing configuration information to libfig.so. There are
options to control the amount of logging performed, specify
the location of output files, and enable or disable timestamps
on log entries. The user can also specify a control file, which
indicates which library calls will have faults inserted and
controls the type and frequency of these faults.
FIG can be used without the fig program, which is ac-

tually little more than a wrapper that sets the appropriate
environment variables for libfig.so but it provides an eas-
ier and faster interface than libfig.so alone.

2.4 Overhead
Since one intended use for FIG is performing fault inser-

tion in running systems, it is vital to minimize its impact
on the instrumented program’s performance. Even during
development, faster tools are generally appreciated. Our
measurements of FIG’s overhead can be found in Table 1,
which shows that FIG is quite lightweight and competitive
with similar tools.
FIG provides a number of options for controlling the amount

of logging it performs, which directly impacts its overhead.
At the lowest logging level, where only injected faults are
recorded, its overhead is very low: only 2.5% in our testing.
Since a log of every library call made is of little value in a
deployed system (not to mention a major use of disk space),
we believe this level of overhead to be representative of the
performance penalties that will be incurred when using FIG

as an online fault injection tool.
Developers will likely appreciate a greater level of detail

in the logs. FIG can log all instrumented glibc calls, or just
those with errors (both naturally occurring and injected).
With full logging enabled, the overhead increases to about
43%. Additionally, the user can add timestamps to each log
entry, which roughly doubles the overhead at a given logging
level.

Even with all logging and timestamp options enabled, FIG
is still much lighter weight than the familiar strace tool.
While not identical in function, strace records a similar
variety of calls, but does not timestamp its log. It incurs
over five times more overhead on our test program than FIG

with comparable logging options.

3. TEST METHODOLOGY
Our initial tests of FIG consisted of using it to inject errors

into several common UNIX programs. Our intent was to se-
lect a variety of programs, including simple command line
utilities, typical desktop applications and supposedly reli-
able servers. All of these applications were tested on work-
stations running Red Hat Linux for Intel-based PCs, kernel
version 2.4. We tested how each program handled faults
from the malloc(), read(), and write() system calls. With
some of the programs, we also tested the open(), close(),
and select() calls when applicable. We chose these calls
on the basis of earlier experiments with the UNIX strace

tool, which indicated that these system calls are among the
most frequently used by our test applications.

For each system call, we injected the types and frequen-
cies of errors that we reasoned would likely be present in a
system under stress from excessive load, hardware failures
or software misbehavior. These included resource scarcity
errors (ENOMEM – insufficient memory, ENOSPC – insuf-
ficient disk space), device failure errors (EIO – general I/O
error) and errors that can occur during the normal execution
of a program, but may be more prevalent when the system
is heavily loaded (EINTR – system call was interrupted).

Our test applications:

1. ls — the common UNIX directory listing program.

2. GNU Emacs 20.7.1 — a large and mature text edi-
tor that can be run with or without an X Windows
interface.

3. Apache 1.3.22 — an open-source HTTP server. We
used a standard web browser to access a set of static

User System Real Overhead
Time Time Time

without FIG 12.11 21.15 33.46 —
FIG: no logging 13.20 20.87 34.28 2.5%
FIG: logging without timestamps 24.29 23.02 47.83 42.9%
FIG: logging with timestamps 36.66 24.25 61.74 84.5%
strace 65.06 47.14 112.85 237.3%

Table 1: Timing using Berkeley DB to write and read one million words without transactions. The tests
were run with and without FIG and strace. Using FIG, we enabled various options: suppressing log messages,
logging but not timestamping each system call, and full logging and timestamping. All tests were done using
five runs and averaging the results. All times are in seconds.

HTML pages through this server.

4. Berkeley DB 4.0.14 — an open-source flat file database
library. Our test application was a port from TCL to C
of one of the library’s regression tests. This test loads
an unsorted list of 10,000 words into the database and
then reads them out in sorted order.

5. Netscape Communicator 4.76 — a popular web browser.
Our tests involved loading and reloading a series of web
pages from remote sites.

6. MySQL Server 3.23.36 — an open-source database server
with full transactional properties and support for re-
mote access. We used the accompanying MySQL client
program to access, query and alter existing database
tables that were stored on the server.

4. RESULTS
We now analyze the relevant results from testing the sam-

ple programs. A brief summary of our test results can be
found in Table 2.

4.1 ls
We evaluated ls under a limited set of tests to see how

a rudimentary UNIX application would fare under FIG. We
had few expectations of proper recovery behavior on the part
of ls, since it is not billed as being fault tolerant, but the
results were a pleasant surprise.

When ls faces memory scarcity errors, it utilizes a rather
interesting strategy: it retries the failing call but also keeps
a global count of the number of malloc() failures that have
occurred since the past successful call. Once the global count
exceeds a threshold of five, the program exits with a warning
to the user.

4.2 Emacs
We tested Emacs in two modes: with and without its X

Windows interface (i.e., the -nw option), with the goal of iso-
lating a potentially significant source of problems — namely,
the windowing system — from the core program. A large
part of X-enabled Emacs performs event management. In
fact, under X, the single most frequent call into glibc is the
gettimeofday() call, which is made nearly an order of mag-
nitude more frequently than any other call. Thus, we sur-
mised that differences in error handling may arise between
versions of Emacs that do and do not use the X Windows
system.

Both modes of Emacs are able to handle the EINTR er-
ror properly by retrying the failed call. However, under X,
most other failures cause the program to detect an abnor-
mal condition and then exit or cause a segmentation fault,
indicating that the event processing loop does not perform
well in the face of failures.

We also found that neither mode of Emacs is robust against
memory exhaustion. The program is able to detect the first
memory error, and displays a suitable message to the user:
“Memory Exhausted – use M-x save some buffers RET.”
But if a subsequent memory failure occurs, Emacs crashes,
leaving the user unable to save her work.

4.3 Netscape
Netscape exhibited the least recovery-oriented service model

of all of the programs we tested. Regardless of the number
of windows (navigator, email, etc.) open at the time, the
program shuts down immediately and without any kind of
warning to the user upon encountering an EIO or ENOSPC
error. Usually this is a clean shutdown and not a crash—all
preference and configuration files are closed before termina-
tion.

Perhaps the authors felt that this is reasonable behav-
ior for Netscape, given that it is a client-side, nearly state-
less application that makes no guarantees about reliability.
However, Netscape’s failure model raises questions about
the type of failure-related user interface that even a non-
robust application should provide. In particular, it seems
reasonable to suggest that some sort of explanation for the
program’s peremptory termination should be provided to
the user, so that he or she may be able to take steps to
avoid encountering the same situation in the future.

Netscape does a better job of handling EINTR errors,
usually just halting the current page load (sometimes with
a warning dialog box) upon receiving EINTR. Again, consid-
ering Netscape’s best-effort service model, it is acceptable to
expect the user simply to use the “reload” button to resolve
this situation.

4.4 MySQL
The MySQL server proved quite robust. Once the server

is up and running, it provides a high degree of availability by
using a pool of child processes to accept client connections
and process queries. As we observed with injected malloc()

failures, a child simply restarts when it encounters an error,
relying on the remaining child processes to handle any in-
coming requests until it returns to full functionality.

In general, we found that the MySQL server aborts trans-

read() write() select() malloc()

EINTR EIO ENOSPC EIO ENOMEM ENOMEM

Emacs – no X o.k. exit warn warn o.k. crash
Emacs – X o.k. crash o.k. crash crash / exit crash
Netscape warn exit exit exit n/a exit
Berkeley DB –
Xact retry detected Xact abort Xact abort n/a Xact abort
Berkeley DB – detected,
no Xact retry detected data loss data loss n/a or data loss
MySQL Xact abort retry, warn Xact abort Xact abort retry restart process
Apache o.k. req dropped req dropped req dropped o.k n/a

Table 2: Results of testing Emacs, Netscape, Berkeley DB, MySQL and Apache with various failures. The
programs and their configurations are listed along the left. Along the top, we list the different glibc calls
which were tested and the particular error being injected. Boldfaced items indicate poor or undocumented
behavior.

actions at the first sign of problems. Given the strict consis-
tency requirements placed upon database servers, this be-
havior is acceptable because it prevents errors from corrupt-
ing the database.

4.5 Apache
Apache’s error handling mechanisms were among the most

robust of all of the applications tested. Like MySQL server,
Apache utilizes the “process pool” approach to provide en-
hanced overall availability. In addition, the program avoids
many resource exhaustion issues by allocating its entire in-
ternally managed memory pool during program startup and
then not requesting more memory once it has reached a func-
tional state. Thus, Apache does not suffer malloc() errors
in the course of serving pages, since it never needs to call
malloc(). However, our test involves serving only static
pages, and one would expect pages utilizing CGI or Apache
modules to require the allocation of additional memory.

Apache is also at an advantage with respect to writes to
the file system. Apache only writes to the filesystem in
order to maintain the log, a non-critical task. Thus, when
presented with an ENOSPC error on a write (simulating
a full disk), Apache simply ceases writing to the log, but
continues serving pages.

Apache’s handing of network I/O errors generally results
in degraded service: most often, the request being handled
is dropped. Apache successfully retries in the EINTR error
case, but other errors cause the program simply to refuse
to serve the requested page. This may in fact be the best
policy in a networked environment, since network I/O errors
often indicate network congestion or link failures, conditions
that will not be improved by aggressive retries on the part
of the server.

4.6 Berkeley DB
Finally, we looked at the Berkeley DB library. As can

be expected, the database becomes corrupted when trans-
actions are not used and environmental errors occur on write
calls. Using transactions solves these problems, as the trans-
action can be cleanly rolled back without adversely affect-
ing previously committed data. Thus, as pointed out by the
Berkeley DB documentation, one should use non-transactional
mode for data that is not important or that can be easily
regenerated.

5. DISCUSSION & ANALYSIS
We now present some of the lessons and design patterns

that we learned from both the successful and unsuccessful
aspects of the applications we tested. We were not expect-
ing to learn so much from such a limited suite of tested
programs; this seems to point to the utility of the FIG tool
as an aid to the programmer.

The design patterns that we learned turn out to be rather
simple to implement in many different applications. They
generally do not induce much overhead, but their use can
alleviate or eliminate many sources of errors and unrecover-
able problems.

Our results seem to indicate that server-side applications
usually are engineered to be more robust than client-side ap-
plications, with more strictly defined interfaces and built-in
contingency handlers. It seems likely that server applica-
tions are designed more carefully due to the higher expecta-
tions in terms of reliability and availability that are placed
upon them.

In the following section, we also consider the possible uses
of a fault injection tool like FIG. These include use as a soft-
ware development tool as well as online testing of systems
that have been developed to incorporate advanced failure
recovery mechanisms.

5.1 Resource Preallocation
Dealing with scarce resources in the course of comput-

ing can be a challenging task. When faced with a failed
malloc() call, we have seen that few applications check for
the condition, much less recover from it. Given that ap-
plications should be checking for these cases of insufficient
resources, what are they to do when they detect them?

One useful strategy is using resource preallocation to elim-
inate the possibility of scarcity-related failures during the life
cycle of a program. We see this design pattern in Apache.
It allocates all of its needed memory in the startup code of
the initial process; no subsequent memory allocations are
performed after this initial series.

Using this model, we see that Apache cannot encounter a
malloc() failure in the middle of its processing, by virtue
of its refusal to make any further calls to malloc(). We can
apply this simple strategy of isolating resource acquisition
in the initial startup code to other situations as well. For
example, it is often useful at startup to open files that are

known to be needed in the future.
The penalty for such a scheme is that resources may be

over-provisioned at the time of application initialization.
This owes to the fact that the actual resource requirements
may not be known until “run-time” — i.e., until the resource
must be used. The overhead of provisioning resources for
times of trouble, however, can avert a catastrophic outcome
and will reduce the number of crashes that a program en-
counters.

Resource preallocation does not fully solve the problem,
however. The resource may be scarce at the time of pro-
gram initialization, thus causing an error at that point. In
fact, since we may be over-provisioning the resource, we are
increasing the chance that we will encounter such a state of
resource exhaustion. However, we posit that encountering a
failure at program initialization is more desirable than do-
ing so in the middle of program execution, when it is more
likely that the state of the system will be disrupted by an
abnormal termination of the operation in progress.

In many situations, full resource preallocation is not feasi-
ble. However, a limited form of this technique could alleviate
many detrimental effects with a minimal cost. For example,
one could imagine text processing applications that allocate
a small amount of extra space, which allows them to prop-
erly save existing open files when free external memory is
scarce. This technique limits overhead, while preventing the
full catastrophe of lost data.

5.2 Graceful Degradation
We refer to techniques that offer at least partial service

in the face of failures as providing “graceful degradation”
of service. Such techniques, whereby errors lead to reduced
functionality rather than outright failures, ameliorate down-
time until an operator can fully recover the system. Graceful
degradation is a central theme in the fault-tolerant comput-
ing philosophy.

One concrete example that we can point to is Apache.
When the Apache log file is not able to be written, the rest
of the service continues without interruption, but the log file
is not written.

5.3 Selective Retry
Retrying errors seems to be a natural solution to resource

exhaustion. Waiting a (tuneable) amount of time and retry-
ing a failed system call can help in cases where resources
later become available. ls uses this technique to retry failed
calls to malloc(). Instead of retrying indefinitely, it main-
tains a global count of the number of malloc() failures en-
countered. Thus, it bounds the time to failure so that other
measures can be taken if memory is not available. By com-
parison, Berkeley DB did not retry, but relied on the host
application to do so; it returned the underlying error as a
return code, allowing the caller to retry if it desired.

5.4 Process Pools
Both Apache and MySQL fork a pool of child processes

at startup. The process pool approach provides a higher
degree of perceived availability for the program, because the
other child processes can mask the failure of a sibling by
redistributing the processing load among themselves until
the failed child can restart.

It should be noted, however, that while this approach cer-
tainly yields greater recoverability from localized failures, it

may not be sufficient to keep the application running under
widespread resource scarcity. In fact, such behavior may ac-
tually prove detrimental to the system, if continuous failed
restarts by the child processes end up wasting even more
system resources.

5.5 Potential Uses of FIG
At this point, we would like to speculate on some valuable

uses of FIG. We propose that using fault injection in produc-
tion systems can lead to better long-term reliability. It is
certainly true that this radical view may not improve the
robustness of systems built under current software method-
ologies. However, systems designed with advanced recovery
mechanisms like reboot protocols, self-healing configuration
support or fault-tolerant behavior should be able to take
advantage of the ability of online fault injection to expose
latent errors and software bugs.
FIG is also extremely applicable to contemporary applica-

tions such as Internet services. Using FIG to test programs
in a development environment will help ensure the correct-
ness of recovery-related code, while constantly encouraging
developers to remain aware of the types of failures their pro-
grams may encounter.

To summarize, simply ignoring the problem of environ-
mental errors and hoping that they will not occur is a per-
ilous gamble. Since these types of errors do occur, it is im-
portant to ensure proper handling of them. FIG provides a
straightforward mechanism for verifying that error-handling
mechanisms function properly.

6. FURTHER WORK
Enhancements to FIG would allow greater testing flexibil-

ity. One area in which the enhancement would be particu-
larly beneficial is that of the FIG control language. Allow-
ing for clock time-based events would help to create fail-
ure scenarios wherein multiple calls fail at nearly the same
time (i.e., malloc(), read(), and write() failures). This
would allow one to more accurately simulate a severe re-
source shortage. Adding the ability for the language to in-
ject failures only when a given condition holds would enable
the simulation of faults in particular subsystems, such as
faults on a given hard disk. Along these lines, supporting
a Markov error model would add flexibility in being able to
test varied error patterns.

It would be beneficial for FIG to grow to be a part of a
larger suite of tools that can all be used toward improving
reliability. One such combination would be to pair FIG with
a root cause analysis system to allow for the diagnosis of
unhandled errors.

In the larger view, it is evident that FIG, while useful in a
wide variety of environments for numerous purposes, is still
intrinsically limited by its dependence on the UNIX platform
and its restriction to interactions at the application/library
boundary. A possible long-term future project would be to
investigate other abstraction levels for system instrumenta-
tion that are applicable to a larger variety of platforms and
environments. A prime candidate for such research is the
machine monitor layer of a virtualized execution environ-
ment.

7. CONCLUSION
We have seen how FIG can be used to find bugs in ex-

isting, mature software programs, and that even mature,
reliable programs have poorly-documented interfaces and
insufficient error recovery mechanisms. From this, we con-
clude that application development can benefit a great deal
from a comprehensive testing strategy that includes mech-
anisms to introduce errors from the system environment.
FIG fulfills this need by providing a straightforward method
for introducing environment errors, which can then exercise
seldom-used recovery code. FIG also allows us to evaluate
both successful and unsuccessful application programming
practices.

The short-term gain for an application in development is
quite clear: running FIG during development will uncover
improper error handling quickly, especially if high error in-
jection rates are used. Running an application in production
with FIG can help expose latent errors, but requires that the
application already has a considerable level of advanced er-
ror detection and recovery mechanisms in place.

8. ACKNOWLEDGMENTS
We would like to thank Aaron Brown for his helpful sug-

gestions and guidance throughout the project. Many thanks
also to Jim Whittaker, the other members of the ROC team,
and ROC seminar guest speakers Brendan Murphy and Jim
Gray for their input.

9. ADDITIONAL AUTHORS
Additional authors: Dave Patterson (University of Cali-

fornia, Berkeley, email: patterson@cs.berkeley.edu).

10. REFERENCES
[1] A. B. Brown and D. A. Patterson. Embracing Failure:

A Case for Recovery-Oriented Computing (ROC). In
High Performance Transaction Processing Symposium,
October 2001.

[2] J. Carreira, H. Madeira, and J. G. Silva. Xception: A
Technique for the Experimental Evaluation of
Dependability in Modern Computers. IEEE
Transactions on Software Engineering, 24(2):125–136,
1998.

[3] M. Coleman. SUBTERFUGUE: A Framework for
Observing and Playing with the Reality of Software.
http://subterfugue.org, 2002.

[4] IBM Corporation. Autonomic Computing.
http://www.research.ibm.com/autonomic/, 2001.

[5] Center for Software Engineering Research. Holodeck.
http://se.fit.edu/holodeck/, 2002.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer.
A Secure Environment for Untrusted Helper
Applications: Confining the Wily Hacker. In 6th
Usenix Security Symposium, 1996.

[7] Hewlett-Packard. SoS - Self-Organizing Services.
http://www.hpl.hp.com/research/itc/csl/pss/sos,
2002.

[8] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek.
Automated Robustness Testing of Off-the-Shelf
Software Components. In 28th International
Symposium on Fault-Tolerant Computing, pages
464–468, 1998.

[9] X. Li, R. Martin, K. Nagaraja, T. Nguyen, and
B. Zhang. Mendosus: A SAN-Based Fault-Injection
Test-Bed for the Construction of Highly Available
Network Services. In 1st Workshop on Novel Uses of
System Area Networks (SAN-1), 2002.

[10] B. P. Miller, L. Fredriksen, and B. So. An Empirical
Study of the Reliability of UNIX Utilities.
Communications of the ACM, 33(12):32–44, 1990.

[11] C. Perrow. Normal Accidents. Princeton University
Press, 1999.

[12] K. Vo, Y. Wang, P. E. Chung, and Y. Huang. Xept: A
Software Instrumentation Method for Exception
Handling. In The Eighth International Symposium on
Software Reliability Engineering, pages 60–69,
November 1997.

[13] J. A. Whittaker. Software’s Invisible Users. IEEE
Software, pages 84–88, May/June 2001.

