
To Err is Human

Aaron B. Brown and David A. Patterson
Computer Science Division, University of California at Berkeley

{abrown,pattrsn}@cs.berkeley.edu

Abstract
We argue for the importance of human error as a signif-
icant and oft-overlooked factor in system dependability,
and contend that human behavior must be considered in
both dependability benchmarks and high-dependability
system designs. We support our claims with data illus-
trating that human-induced failures consistently
account for half of all outages, and show that human
error accompanies even the simplest system operation
and maintenance tasks. We then consider how human
behavior might be accounted for in both dependability
benchmarks and in the designs of dependable computer
systems.

1. Introduction

Dependability is a crucial aspect of modern server
systems. As the growth in the Internet increases the
direct exposure of data and service delivery to the end
user, dependability and its associated metrics of avail-
ability, performance, and correctness become real chal-
lenges that directly affect users and the corporate
bottom line of service providers. Much to the chagrin of
those service providers, achieving high dependability is
currently a losing battle. Outages remain frequent even
among the high-end of service providers, and outage
costs remain high in both economic and social terms. A
recent survey by InternetWeek revealed that 65% of
surveyed sites suffered a customer-visible outage at
least once in the previous 6-month period; 25%
reported three or more outages during that period [10].
The survey also revealed the extraordinary hourly costs
of those outages, ranging from several hundred thou-
sand dollars an hour for e-commerce sites like Ama-
zon.com and Ebay to as much as $6.5 million per hour

for an online stockbroker. With all the research in the
systems and fault-tolerance communities into building
dependable systems, why have we not been able to
eliminate these outages entirely?

We claim that the answer to this question lies at least
partly in the fact that most dependability research has
focused on the computer system itself—its hardware
and software—and has ignored a crucial determinant of
system dependability: the human operator. Human
operators play a vital role in system dependability,
detecting problems as they arise, diagnosing them, and
repairing them to maintain dependability. Unfortu-
nately, as we will illustrate in this paper, human opera-
tors rarely perform these tasks perfectly, and often end
up being the primary source of system failures and
unavailability. Thus, until we can completely eliminate
the human by building fully self-maintaining, self-
administering systems (a goal which remains far away
on the horizon), the performance of human operators
will remain a critical component of system dependabil-
ity.

We believe that it is time for the system dependabil-
ity community to take the behavior of human operators
into account, both in the design of high-dependability
systems and in benchmarks for dependability. Depend-
able systems must be built to tolerate the inevitable
errors made by their human operators; dependability
benchmarks must measure a system’s propensity for
inducing human errors and must quantify its resilience
to them.

In the remainder of this paper, we will present evi-
dence underscoring the importance of the human opera-
tor in system dependability, then will briefly consider
how the human might be taken into consideration both
in dependability benchmarking and in the design of
dependable systems.

2. The importance of human error

Humans make errors; this is a fact of life. Major
league baseball players—who are highly trained, care-
fully selected, paid millions of dollars, and watched by

This work was supported in part by the Defense Advanced Research
Projects Agency of the Department of Defense, contract no.
DABT63-96-C-0056, the National Science Foundation, grant no.
CCR-0085899 and infrastructure grant no. EIA-9802069, and the
California State MICRO Program. The information presented here
does not necessarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.

RAID System Total Trials
Trials with Human Errors Human Error Rate

fatal errors any errors fatal overall

Windows 35 1 3 2.9% 8.6%

Solaris 33 0 6 0.0% 17.1%

Linux 31 3 7 9.7% 22.6%

Table 1. Human error rates for simple software RAID maintenance task. On each trial, the human operator was
asked to identify and repair a single failed disk in a software RAID volume. Five people participated in the experi-
ments, each carrying out between 5 and 9 trials on each of the three RAID systems. Fatal errors represent situations in
which data on the RAID volume was lost, whereas the overall error rate includes trials in which the operator made
errors but was able to recover without data loss.
thousands of fans—make errors in 1% to 2% of their
fielding chances. The probability of human error on
even the most straightforward tasks (like reading
numerical digits off a screen) is nonzero [4], and during
stressful situations, human error rates rise to between
10% and 100% [8]. In a simulator study of the behavior
of bridge watchkeepers, who are supposed to prevent
maritime accidents (which could result in the loss of
life as well as ships), there was a serious error rate of
3.5% [9]. Since computer maintenance scenarios often
involve multiple stresses—deadline pressure, system
alarms, unexpected repairs at off-hours, poor environ-
mental conditions, and so on—it should come as no sur-
prise that human operator errors during maintenance
are a significant source of system outages.

Some simple experiments that we have carried out
hint at the seriousness of human error during mainte-
nance [1]. We asked five people to carry out a basic
repair task: replacing a failed disk in a software RAID
system. All five people were trained on how to perform
the repair, and were given step-by-step printed instruc-
tions to follow; the repair process was repeated several
times for each participant. We computed two measures
of human error: the fraction of the trials in which
human mistakes resulted in data loss, and the fraction of
trials in which the human made a mistake but was able
to recover from it. We ran the experiment across three
different software RAID systems to get a feeling for the
variance in these metrics. Our results are summarized in
Table 1. Notice that even on this simple maintenance
task with full instructions and in a low-stress setting,
our human operators made fatal errors at a rate of up to
almost 10%. When we take into account non-fatal
errors, the percentages jump to a range of between
8.6% and 22.6%.

This data illustrates two important points about
human operator error during maintenance. First, it is
inevitable even with good training and on simple tasks.
Second, there can be a significant variance in error rates

between different systems. This fact is an important
motivator for considering humans in any dependability
benchmark, as we will discuss in Section 3.

Our software RAID data speaks directly to the pro-
pensity of human operators to make errors during main-
tenance, but only hints at how important such errors are
in causing system outages. To understand that connec-
tion we can turn to a large collection of existing field
data supporting the theory that operator errors play a
key role in system failures and outages. In 1999, Oracle
reported that half of the product failures that they ana-
lyze are due to human error [6]. A study by Murphy and
Gent of VAX system failures in 1993 indicated that sys-
tem management tasks involving human operators were
responsible for more than 50% of failures, and that the
error rate was rising as hardware and software failures
become less important [7]. Gray reports a similar statis-
tic for fault-tolerant Tandem systems studied in the
mid-1980s: 42% of failures in these systems were due
to system administration errors—again human error [3].
Turning back the clock further, data from the late 1970s
reveals that operator error accounted for 50-70% of
failures in electronic systems, 20-53% of missile sys-
tem failures, and 60-70% of aircraft failures [2].

Even if we look at arguably one of the most fault-tol-
erant systems in existence today—the public switched
telephone network (PSTN)—we find significant evi-
dence of human-error-induced failure. A study by Kuhn
of switch failure data collected between 1992 and 1994
reveals that, excluding overload outages due to inten-
tional underprovisioning of the system, human errors
were responsible for 52% of reported outages and 50%
of outage minutes [5]. Of those human-induced outages
and outage minutes, roughly half were the direct result
of errors made by telephone company personnel during
maintenance operations.

What is particularly surprising about this collection
of data is that the fraction of human-induced outages
has hovered, virtually unchanged, around 50% for the

past three decades. This statistic hints at an endemic
problem: even as system architectures and implementa-
tions have progressed dramatically over the past 30
years, human errors and their consequences have
remained the primary cause of failures and outages.
Why might this be so? Perhaps the problem of address-
ing human error is entirely intractable. But this is
unlikely; work in the user-interface and HCI communi-
ties shows that it is possible to compensate for human
error (as do successes in the area of safety-critical sys-
tems for heavy industry and air travel). A more plausi-
ble explanation is that the problem of human error has
simply been ignored by the community of dependable-
system designers and researchers: a survey of the recent
literature in the area of general-purpose dependable
computer system design reveals virtually no research
interest in addressing human error.

We claim that human error is not a problem to be left
solely to the user interface community, and that it must
be addressed in system design as well. For this to hap-
pen, we need tools—benchmarks—that can reflect the
impact of human error on system dependability, and we
need to start considering human error tolerance in our
system designs. The next two sections of this paper
address these issues of benchmarks and human-error-
tolerant design techniques.

3. Incorporating humans into dependabil-
ity benchmarks

The data in the previous section makes it very clear
that humans play an integral role in determining a sys-
tem’s dependability. Humans can increase dependabil-
ity by diagnosing and repairing system problems, but
they can also reduce it by making errors either during
repair or during preventative maintenance. As such, any
meaningful dependability benchmark must capture this
kind of human behavior.

Rather than trying to directly calculate human error
rates and estimate their effects on dependability, we
believe that the right way to capture human behavior is
to treat human operators as integral parts of the tested
system and to carry out the dependability benchmark
with the involvement of the operators. In this approach,
operators are allowed to participate in system repairs
during the benchmark; the benchmark should also be
set up so that the operators carry out a realistic set of
typical maintenance tasks on the system during the
course of the benchmark. If the operators increase sys-
tem dependability by efficiently and correctly perform-
ing repairs, then that will be reflected in the resulting
dependability score; if the operators decrease depend-

ability by making errors, that dependability impact will
also be reflected in the benchmark result.

This approach does have several practical challenges
that must be addressed. One is selection of the opera-
tors. If the system being benchmarked is an existing,
deployed system, this task is trivial: simply use the sys-
tem’s normal day-to-day operations staff. But if the sys-
tem is new, or under development, this problem is more
difficult. The simplest solution is probably the best: use
the people best-trained in the system’s operation as the
human operators in the benchmark. Although this
approach raises questions about reproducibility and
ease of result comparison across systems, it may be the
only practical one, and there is sufficient precedent in
the benchmarking community for similar solutions. For
example, the well-respected TPC database performance
benchmarks face a similar problem in that human
administrators are needed to configure and tune the
tested database systems; TPC’s solution is that the
benchmarks are typically carried out with the database
vendor supplying its best database administrators to
configure and tune the tested systems. We are simply
advocating a similar approach to obtaining operators
for dependability benchmarks; just as the best database
administrators should be able to tune a DBMS to pro-
vide its optimal upper-bound performance, the behavior
of the best operators during a dependability benchmark
should provide a lower bound on the potential human
dependability impact.

There is also the issue of using humans at all during
the benchmark. Most traditional performance bench-
marks are fully automated and run without human
involvement. It would be ideal to have dependability
benchmarks that are equally automated and easy to use,
but since the human operator plays such a crucial role
in affecting system dependability, at least for now there
seems to be no alternative to including the human in the
benchmark loop.

Although human participation in benchmarking is
new to the systems community, it is well-established in
other communities of computer science, particular
human-computer interaction. We believe that existing
techniques for experimental design can be migrated
across these community boundaries, and that systems
researchers can learn how to carry out experiments with
human participation. Indeed, our initial study of human
error in software RAID system maintenance (described
above in Section 2) demonstrates that even simplistic
experiments conducted by non-experts can provide use-
ful results in quantifying human error behavior and sug-
gesting system improvements [1]. Moreover, until we
have sophisticated modeling technology that can mimic
human maintenance behavior and realistically predict

mistakes, or until systems become more self-maintain-
ing and self-administering, the need for human opera-
tors in both real life and dependability benchmarking
will remain.

Finally, note that it might be possible to partially
address the automation of dependability benchmarks by
splitting them into two phases, an initial human-depen-
dent phase in which human errors are measured, and a
second automated phase in which those errors are simu-
lated and injected into systems along with the standard
benchmark workload. In his classic book on human
error, Reason states that errors can be categorized as
skill slips, memory lapses, or planning mistakes [9]. By
extending this categorization to the examples of opera-
tor error collected during the first phase of the bench-
mark, we can use the results as guidelines for the types
of errors to simulate in the second phase. If we can also
create systems that allow recovery from at least some
types of human error (see the next section), then the
second phase of the benchmark becomes feasible, and
evaluating operator success in recovering from typical
human-induced faults should become as viable as eval-
uating recovery from hardware and software faults.

4. Building dependable human-operated
systems

Benchmarks will help us evaluate our progress
toward dependable human-operated systems. But in
addition to a measurement technology, we also need to
think about ways to design human-operated systems so
that they can be robust to human errors during opera-
tion and maintenance. As in most issues of dependable
systems, there are two basic approaches. The first
approach is one of avoidance: we can try to reduce the
rate of human errors by improving system interfaces,
providing better task guidance during maintenance, and
providing better operator training. This is a traditional
approach, and unfortunately one that has not seen dra-
matic success in practice as evidenced by the rather sta-
ble rate of human-induced outages described in
Section 2.

There are, perhaps, novel techniques that could be
used to improve avoidance mechanisms. For example,
systems could provide on-line operator training in the
form of unannounced “fire-drill” tests in which the sys-
tem simulates a realistic failure and requires the opera-
tor to repair it inside of an isolated sandbox that
protects against errors. Such on-line training would
improve an operator’s hands-on familiarity with the
failure modes, interfaces, and recovery procedures of
the system, and would allow operators to learn from

their mistakes in a safe environment where the impact
of those mistakes is minimized.

But even the most sophisticated avoidance mecha-
nisms can only go so far; as we saw in Section 2,
humans still make mistakes despite training, and stress
can drive up error rates on even the simplest tasks with
the best user interfaces. These observations motivate
the second approach to human error, tolerance: we can
design systems so that they are tolerant of human
errors, and work to minimize the impact of human error
on overall system dependability. This approach, while
not unusual in hardware fault-tolerance, is rather radical
when applied to human error-tolerance. Few if any sys-
tems today provide maintenance interfaces that are tol-
erant of error, that provide effective and rapid recovery
paths from arbitrary human mistakes. The concept of
undo—ubiquitous in the productivity applications that
we use every day—is rarely found in system mainte-
nance, yet it is clear that undo matches well with human
error-proneness and our natural desire to experiment
with possible actions before committing to them. We
claim that the approach of tolerance—perhaps imple-
mented as an undo for system maintenance actions—
may be the only one that will provide measurable
dependability gains in practice, as human errors (even
with the best user interfaces and training) are a funda-
mental inevitability of life. We are currently pursuing
research into the appropriate semantics and implemen-
tation of maintenance undo in the context of Internet
server systems.

Of course, the approaches of avoidance and toler-
ance are complimentary; even a system tolerant of
human errors will benefit from human-error-avoidance
mechanisms like improved user interfaces. An avoid-
ance system is essentially an optimization; it reduces
the day-to-day pressure on the tolerance mechanisms,
allowing them to be implemented with simpler, more
reliable, but potentially more resource-intensive tech-
niques. But tolerance is still fundamental, required to
handle the errors that inevitably slip through.

5. Conclusion

The traditional focus on hardware and software as
the only important aspects of dependable systems has
led to a state in which human mistakes have become the
largest single source of system failures and outages. We
have argued for a reevaluation of these traditional prior-
ities and for a new focus on human error. We are at the
infancy of dependability benchmarking, offering us a
unique opportunity to incorporate consideration of
human behavior from the start; we believe that it is
essential to seize this opportunity lest we miss our

chance to develop realistic dependability benchmarks
that reflect the reality of today’s human-error-filled
environment. Furthermore, we believe that the time is
long overdue to consider human error in the design of
dependable systems. By building systems that acknowl-
edge human error and tolerate it, we can break free of
the traditional focus on incremental hardware and soft-
ware improvements, and once again begin making sig-
nificant advances in system dependability.

Acknowledgements

The authors wish to express our gratitude to
Armando Fox, James Hamilton, Jim Gray, John
Chuang, and the Berkeley ISTORE research group for
the stimulating discussions that inspired this work. We
also wish to thank Eric Anderson for his considerable
contributions in collecting the software RAID human
error data, and finally our anonymous reviewers for
their insightful commentary and suggestions.

References

[1] A. Brown. Towards Availability and Maintainability
Benchmarks: A Case Study of Software RAID Systems.
UC Berkeley Computer Science Division Technical
Report UCB//CSD-01-1132, Berkeley, CA, January
2001.

[2] J. M. Christensen and J. M. Howard. Field Experience in
Maintenance. Human Detection and Diagnosis of System
Failures: Proceedings of the NATO Symposium on
Human Detection and Diagnosis of System Failures, J.
Rasmussen and W. Rouse (Eds.). New York: Plenum
Press, 1981, 111–133.

[3] J. Gray. Why Do Computers Stop and What Can Be
Done About It? Symposium on Reliability in Distributed
Software and Database Systems, 3–12, 1986.

[4] B. H. Kantowitz and R. D. Sorkin. Human Factors:
Understanding People-System Relationships. New York:
Wiley, 1983.

[5] D. R. Kuhn. Sources of Failure in the Public Switched
Telephone Network. IEEE Computer 30(4), April 1997.

[6] J. Menn. Prevention of Online Crashes is No Easy Fix.
Los Angeles Times, 2 December 1999, C-1.

[7] B. Murphy and T. Gent. Measuring System and Software
Reliability using an Automated Data Collection Process.
Quality and Reliability Engineering International,
11:341–353, 1995.

[8] R. H. Pope. Human Performance: What Improvement
from Human Reliability Assessment. Reliability Data
Collection and Use in Risk and Availability Assessment:
Proceedings of the 5th EureData Conference, H.-J. Win-
gender (Ed.). Berlin: Springer-Verlag, April 1986, 455–
465.

[9] J. Reason. Human Error. Cambridge University Press,
1990.

[10] T. Sweeney. No Time for DOWNTIME—IT Managers
feel the heat to prevent outages that can cost millions of
dollars. InternetWeek, n. 807, 3 April 2000.

	To Err is Human
	Abstract
	1. Introduction
	2. The importance of human error
	3. Incorporating humans into dependability benchmarks
	4. Building dependable human-operated systems
	5. Conclusion
	Acknowledgements
	References

