
Experience with Evaluating Human-Assisted Recovery Processes

Aaron B. Brown, Leonard Chung, William Kakes, Calvin Ling, and David A. Patterson
EECS Computer Science Division, University of California, Berkeley

Contact author: abrown@cs.berkeley.edu

Abstract

We describe an approach to quantitatively evaluating
human-assisted failure-recovery tools and processes in the
environment of modern Internet- and enterprise-class server
systems. Our approach can quantify the dependability
impact of a single recovery system, and also enables com-
parisons between different recovery approaches. The
approach combines aspects of dependability benchmarking
with human user studies, incorporating human participants
in the system evaluations yet still producing typical depend-
ability-related metrics as results. We illustrate our methodol-
ogy via a case study of a system-wide undo/redo recovery
tool for e-mail services; our approach is able to expose the
dependability benefits of the tool as well as point out areas
where its behavior could use improvement.

1. Introduction

Human operators play a key role in the dependability of
modern server systems. In particular, they often drive the re-
covery processes that restore quality of service after system
failures. While there are ongoing efforts to automate recovery
[4] [7], today’s reality is that human operators are a fundamen-
tal part of any large system’s dependability strategy. It is
therefore crucial that systems provide tools to help operators
restore system behavior after dependability has been compro-
mised. It is likewise crucial that we have a way to evaluate
those tools: just as benchmarks from SPEC and TPC have
driven CPU and database performance to dizzying heights,
benchmarks for human-assisted recovery could encourage sig-
nificant advances in recovery, and hence dependability.

In this paper, we present the first steps toward building a
benchmark for human-assisted recovery processes and tools.
Our approach is not yet a complete benchmark, as it does not
address some of the practical concerns of benchmarking like
distilling results to a single number, nor has it been validated
across a wide range of recovery systems. But we will address
the central challenge of a benchmark for human-assisted re-
covery: how to design trials that can quantify the impact of a
human-driven recovery process on dependability-related met-
rics like availability, correctness, and performance. We will il-

lustrate our approach through a case study of a system-wide
recovery tool designed explicitly for use by the operators of
Internet and enterprise services [2].

Our approach uses different techniques than those found in
existing performance or dependability benchmarks [1] [6] [9]
[13], even dependability benchmarks that incorporate human
operator error into the faultload [14] [15]. Our evaluations are
performed using actual human participants, much like one
might see in an HCI usability evaluation study, although we
retain the structure of a dependability benchmark by focusing
on system-level metrics; we treat the human as a black-box
perturbation to the system, similar to an injected error.

Using human participants is unavoidable, since operator-
assisted recovery is by nature an interactive process, involving
repeated cycles of problem diagnosis, repair plan formulation
and execution, and testing. Were we to not use human partici-
pants, we would have to simulate their behavior during this
process, a goal equivalent to replacing human system manage-
ment with automation and one that is well beyond the current
state of the art.

Involving humans increases the cost of an evaluation and
raises concerns of variability. Thus much of our approach is
focused on reducing cost and controlling variance. In doing
so, we will have to make compromises that sacrifice the ulti-
mate representativeness of our results. Such compromises are
the bread-and-butter of benchmark design; the art of creating
benchmarks lies in balancing the conflict between practicality
and the desire to produce results that capture the full complex-
ity of real environments.

We begin addressing this balance in Section 2, where we
summarize our evaluation methodology and describe the com-
promises we chose to make. We then turn to a case study that
illustrates our approach: Section 3 describes the experimental
setup for evaluating a system-wide undo/redo recovery tool
that we have built, and Section 4 presents the results of that
analysis. We discuss related work in Section 5, and conclude
in Section 6.

2. Methodology, challenges & compromises

Our approach to evaluating human-driven recovery is
based on the methodology of a traditional dependability
benchmark [1] [9] [6], with the exception that we include the

human system operator as part of the system under test (SUT)
and therefore require repeated experiments and an additional
phase of human subject recruiting and training. The methodol-
ogy consists of 4 phases:

1. faultload development: a selection of injectable errors
and faults is chosen to mimic those likely to be seen in
practical deployments of the SUT.

2. workload and metric selection: a simulated end-user
workload is developed to apply to the SUT. This work-
load is most easily defined by reusing the workload
specification of an existing domain-specific perfor-
mance benchmark. Associated with the workload are
metrics that quantify the SUT’s quality of response:
performance, availability, correctness, and so on.

3. participant selection and training: human subjects
must be recruited to act as system operators during the
evaluation experiments. This involves choosing a rep-
resentative subject pool, recruiting from that pool, and
screening and training recruited subjects to minimize
variability in their background, experience, and skills.

4. experiments: the evaluation process consists of multi-
ple experiments, each involving one human participant
and taking the form of a human trial. The participant
plays an active role in maintaining the SUT as it is sub-
jected to the faultload and workload developed in the
first two phases. The results of each experiment consist
of the time-varying quality metrics collected by the
workload generator.

The methodology as presented poses several difficult prac-
tical challenges, including faultload selection, participant se-
lection and training, and experiment design. We have
discussed these challenges in depth in previous work [3]; due
to space constraints, we do not reproduce that analysis here.
Instead, we enumerate our practical solutions to the challenges
and identify the benchmark compromises that they embody.

Faultload development. As human operator error is the most
significant source of failures in Internet and enterprise ser-
vices [11], the most representative faultload would come from
an ethnographic study of operator behavior across large de-
ployed installations of the SUT. Due to the cost and impracti-
cality of this approach, we compromise and produce the
faultload by surveying operators of deployed systems in the
SUT’s application domain. Surveys are inexpensive and have
the benefit of being based on real-world data, but suffer from
bias due to self-reporting.

Participant selection and training. Ideally, one would select
human participants from the same pool of operators that
would manage deployed installations of the system under test.
Since this is often impractical, a compromise approach is to
use a subject pool consisting of people with reasonably-equiv-
alent skill levels. To salvage some representativeness from the
resulting less-than-representative subject pool, screening and
training can be used. Screening filters subjects to ensure a
minimum level of knowledge of systems operation tasks and

familiarity with the application domain of the SUT. Training
bolsters this background with SUT-specific knowledge.

Experiment design. Most recovery evaluations will pit a sup-
posedly-improved recovery tool or process against a baseline
system; cross-system comparison benchmarks are a special
case of this type of evaluation. A standard experiment design
for such cases is to conduct a randomized trial with SUTs and
faultload cases assigned randomly to each human participant.
While simple, this basic format is appropriate only for very
homogeneous or large participant pools, where the inherent
variability between participants can be averaged out.

A compromise that makes the experiments more practical
is to compare each subject only to himself, allowing the exper-
imenter to draw independent conclusions for each subject as
to whether a particular SUT’s recovery process is more effec-
tive than another’s. Such an experiment design is achieved by
having each subject perform recovery for the same injected
fault test case in two or more back-to-back trials, each involv-
ing a different SUTs. There is a danger of learning bias, where
a subject learns information in the first trial that helps in the
second. Randomization can average out this bias, but again re-
quires large subject pools. A further practical compromise for
the special case of comparing a new recovery mechanism
against a baseline is to leave this bias in: by always perform-
ing the baseline trial second, the bias becomes systematic, and
a positive conclusion can still be drawn from the evaluation if
the improved system demonstrates better dependability than
the baseline. Only if the baseline outperforms the improved
system is a more complex randomized trial needed.

3. Case study setup: evaluating Undo/Redo

We now illustrate our approach to evaluating human-as-
sisted recovery processes by applying it to an Undo/Redo tool
designed explicitly for human-driven failure recovery in Inter-
net and enterprise e-mail server systems. The Undo/Redo tool,
described in depth in prior work [2], allows human operators
to retroactively repair any effects that a failure might have had
on an e-mail service’s hard state, even when the root cause of
the failure is unknown. The tool proxies end-user interactions
and presents a time-travel interface to the operator, who can
use it to roll back (undo) system state to a known-good point,
then repair it and roll forward (redo) all intervening end-user
work; the redo step reprocesses logged user interactions (such
as reading/filing e-mail) in the context of the repaired system.

Our goal in evaluating the Undo/Redo tool was to deter-
mine if it could improve the end-user-perceived dependability
of an e-mail store service as compared to a version of the same
service without the tool. We focused on two aspects of de-
pendability, correctness and availability. We define an e-mail
server to be correct if it properly delivers all messages it re-
ceives and properly performs all user-requested operations
that it acknowledges. We define availability at a network pro-
tocol level: an e-mail server is available if it accepts SMTP/
IMAP connections and completes their protocol dialogues.

Faultload selection. We used the survey approach described
above to select a faultload. We developed a web-based survey
and e-mailed a request for participation to the mailing list of
SAGE, a membership organization dedicated to the profession
of system administration.1 We received 68 completed surveys,
from which we manually extracted and categorized descrip-
tions of 68 challenging e-mail management tasks and 12 sce-
narios where e-mail data was lost; Figure 1 shows the results.
Our analysis shows that the most common failure scenarios
involve configuration errors (typically involving SPAM/virus
filtering software), failed upgrades of the e-mail server plat-
form, and hardware or environmental failures. The dominant
management challenges involve upgrades, SPAM/virus filter
installation, and configuration management. Other survey
questions revealed that another significant, but less challeng-
ing set of management tasks were simple repairs like restart-
ing crashed server processes.

We chose three distinct failure scenarios, two that capture
the dominant failure and management cases identified in the
survey (configuration errors and upgrades), and one that cap-
tured the simple restart-crashed-server task. We used a cogni-
tive walkthrough procedure [5] to identify the injectable
operator errors and software failures needed to reproduce the
scenarios on the SUT. The scenarios were:

1. SPAM filter configuration error: the injected fault is
a mistyped configuration line in the MIMEDefang/
SpamAssassin mail filter script. The resulting syntax
error causes all incoming e-mail that is less than 200KB
in size to be silently rejected.

2. Failed e-mail software upgrade: we simulate the error
that occurs when the operator forgets to activate the
compile-time option needed to enable mail filtering
when upgrading Sendmail from version 8.12.9 to
8.12.10. The symptoms of the resulting failure are that
once the upgrade is installed, all mail filtering ceases.

3. Simple software crash: we simply kill the Sendmail
server process to simulate the effects of a software bug.
The symptoms of the resulting failure are that no
incoming e-mail is accepted by the mail server.

We expected Undo/Redo recovery to be useful for the first
two scenarios, but unnecessary for the third.

Workload selection. We chose an e-mail–specific workload
consisting of a stream of simulated incoming e-mail via the
SMTP protocol and a stream simulating the actions of users
checking mail via the IMAP protocol. Incoming e-mail was
generated according to a Poisson process with a rate of 5 mes-
sages per minute and randomly-chosen message sizes based
on the distribution used by the standard SPECmail2001 e-mail
benchmark [12]. Each piece of incoming e-mail was hashed
and stamped with a unique ID; at the end of each session the
workload generator attempted to retrieve each message to ver-
ify whether it had been received, processed correctly, and fil-
tered if appropriate. Simulated user IMAP sessions were also
generated using a Poisson arrival process with a rate of 5 ses-
sions per minute; in each session, the simulated user logs in,
lists unread messages, randomly retrieves 80% of the new
messages, then randomly deletes 10% of those messages.

Participant selection and screening. We recruited partici-
pants from the student population of the UC Berkeley com-
puter science department. The typical member of this
population is technically-savvy but does not have much expe-
rience with e-mail server operations. We screened respondents
by asking them to self-report their own system management
experience, and also included a skill test in which we tested
knowledge of e-mail protocols and services. We received 18
responses to our solicitation, 14 of which met our screening
criteria of having at least 60% of the maximum possible self-
reported experience and no more than one error on the skill
test. Of these 14 respondents, 13 agreed to participate in the
recovery-evaluation experiments, and 12 completed the exper-
iments. Participants were offered a $50 gift certificate to on-
line retailer Amazon.com to compensate them for their time.

We trained participants by giving them a set of documents
introducing the setup of the e-mail server system and describ-
ing the Undo/Redo tool. After reading these at their leisure,
participants were encouraged to follow a simple task walk-
through that familiarized them with the e-mail server setup:
they were asked to verify that the Sendmail e-mail server was
running, to edit one of its configuration files, and to restart it.

1 Our survey and other screening and training documents can be
found online at http://roc.cs.berkeley.edu/projects/HumanBench/

Platform
change/upgrade,

18, 26%

Filter installation,
25, 38%

Configuration, 9,
13%

Tool
Development, 4,

6%

Architecture, 5,
7%

User Education, 3,
4%

Other, 4, 6%
Config problems,

3

Upgrade-related,
2

Operator error, 1User error, 1

External
resource, 1

Software error, 1

Hardware/Env't, 2

Unknown, 1

Figure 1. Survey of e-mail administrators. The graphs show the breakdown of responses given by practicing e-mail system administra-
tors when asked to describe (a) the causes for actual situations where e-mail was lost, and (b) challenging e-mail management tasks they
had performed recently. The data suggest that a benchmark faultload for e-mail should include configuration errors involving SPAM fil-
ters, upgrades, simple restart-repairs, and hardware failures.

(a) (b) (68 responses)

(12 responses)

They were further given the opportunity to experiment with
the Undo/Redo recovery tool and its user interface.

Experiment design. Since our goal was to compare Undo/
Redo recovery to a baseline system, we chose the self-com-
parison design described above, with each human subject per-
forming two consecutive trials on the same failure scenario,
using the Undo/Redo-enabled system first and the baseline
second. We explicitly focused the experiments on recovery,
excluding consideration of problem detection and diagnosis.

In each trial, the participant received a symptom report de-
scribing one of the faultload scenarios, and was asked to re-
cover the e-mail system to normal operation. The scenarios
were randomly assigned to participants. Each trial had a 30-
minute time limit. Participants had access to the Internet, a
Sendmail manual, a day-old backup of the system, an e-mail
client configured to send test messages, and all standard tools
available on the e-mail server system. The Undo/Redo tool
was available only during the first trial. While participants
could ask any questions they wanted during training, we re-
fused to answer questions during the trials, with one excep-
tion: each participant was allowed one question during each
trial, just as in real-life an administrator might appeal to a guru
for help. The goal of this “guru” resource was to prevent frus-
tration should the participant get stuck; it was only used three
times across the 26 trials we conducted.

System configuration. All of our benchmark sessions used
identically-configured e-mail servers. Each server ran Debian
Linux 2.4.18, Sendmail 8.12.9 as an SMTP server, UW-IMAP
as the IMAP server, and MIMEDefang with SpamAssassin as

the system-wide SPAM filters. All e-mail and mailspools were
stored on a Network Appliance filer connected via gigabit
Ethernet. The workload was generated on a separate machine
also connected via gigabit Ethernet. The participants inter-
acted with the e-mail servers via a Windows 2000-based con-
sole using ssh and Outlook Express. The console machine had
a second video display attached that allowed the experimenter
to unobtrusively monitor the participant’s progress from a lo-
cation out of the participant’s line of sight.

4. Evaluating Undo/Redo: Results

Our experiment infrastructure produces two different fla-
vors of results: per-participant longitudinal data showing the
time-varying behavior of the system as the recovery process
takes place, and cross-participant summary data useful for di-
rect system-to-system comparison. The summary data can be
used for hypothesis testing—in our case, to validate the hy-
pothesis that Undo/Redo-based recovery improves net de-
pendability—while the longitudinal data provides the details
explaining why and how the hypothesis holds. As mentioned
above, we focused on metrics of correctness and availability.

Longitudinal data. Figure 2 plots correctness and availability
over time for one particular participant’s benchmark session.
This participant was asked to recover from the first faultload
scenario (the misconfigured SPAM filter), and the results are
typical of other participants. The two sets of graphs corre-
spond to the two phases of the experiment: the left-hand set
shows baseline results, and the right-hand set shows results
with the Undo/Redo tool available.

C
or

re
ct

ne
ss

0

1

SM
TP

A
va

ila
bi

lit
y

0

1

Time (minutes)

0 5 10 15 20 25 30

IM
A

P
A

va
ila

bi
lit

y

0

1

Failure Recovery Period

C
or

re
ct

ne
ss

0

1

SM
TP

A
va

ila
bi

lit
y

0

1

Time (minutes)

0 5 10 15 20 25 30

IM
A

P
A

va
ila

bi
lit

y

0

1

Failure Recovery Period

Figure 2. Time-varying behavior during recovery for one experiment. The graphs plot instantaneous correctness and availability
over time for an experiment using failure scenario #1 (filter configuration error). The recovery period begins when the participant is in-
formed of the failure, and ends after 30 minutes or when the participant declares success. The system under test is available at time t if it
accepts network connections at that instant. In contrast, correctness is measured at the end of the experiment: the system is correct at
time t if a message originally sent at time t has been properly received, handled, and stored on disk by the end of the experiment.

Without Undo/Redo Tool With Undo/Redo Tool

In Figure 2, we can see that the Undo/Redo recovery pro-
cess significantly improves the e-mail system’s correctness
under this failure scenario by reducing the number of incor-
rectly-dropped messages compared to the baseline. Further-
more, the experiment illustrates how the Undo/Redo tool
achieves this advantage: it shows that the undo tool is able to
retroactively extend its recovery to the point where the fault
occurred, whereas baseline recovery can at best only correct
errors that occur after recovery begins. Finally, the results
point out that, despite its benefits, the Undo/Redo tool still has
some weaknesses in terms of overall dependability: unlike
non-undo recovery, it causes a temporary drop in IMAP ser-
vice availability (even when the recovery process is aborted,
as revealed by another of our trials), and still allows a number
of messages to be handled incorrectly. These problems were
anticipated during the design of the prototype undo tool, but
the evaluation quantifies their effects and suggests where it
might be worth spending more development effort.

Summary data. We aggregated our experimental data by
computing the total number of mishandled e-mail messages
and the total number of failed attempts to contact the e-mail
service for each benchmark session and each participant, start-
ing five minutes before the participant began recovery and
ending five minutes after the participant signaled completion.
Figure 3 plots these results by participant, graphically show-
ing the comparison between each participant’s first session
(with Undo/Redo) and second session (the baseline). We have
segregated the subjects by the failure scenarios they were
given, and have split off the cases where the subjects chose
not to use or complete the undo-based recovery process.

Figure 3 clearly shows the improvement in correctness
with the Undo/Redo recovery tool: in the 7 cases where the
tool was used, the number of incorrectly-handled messages is
always less than half of the corresponding result for the base-
line system. Because of the systematic bias in our self-com-
parison experiment design, this data is insufficient to quantify
the degree of improvement from undo/redo. However, it does
support the conclusion that the improvement is statistically
significant under a binomial trial model (p-value of 0.045).
Furthermore, the variance is significantly reduced with undo/
redo recovery, indicating that the tool scales well across the
expertise range of the participants, and suggesting that it can
make effective recovery more accessible.

The 5 cases where Undo/Redo was not used break down
into two sets. The first three cases correspond to the scenario
of a crashed Sendmail process, for which Undo/Redo is not
useful. All of the participants realized this and none attempted
to use the Undo/Redo recovery. These cases show only the
learning-curve effect, or the systematic bias introduced by our
fixed-order experiment design. Finally, the remaining two
cases correspond to scenarios where Undo/Redo would have
been useful, but where the subject chose not to use the tool.

The results for availability, also shown in Figure 3, illus-
trate one of the limitations of Undo/Redo recovery. Except for

failure scenario #1, Undo/Redo recovery does not offer an
availability advantage over baseline recovery, and, especially
for IMAP, can actually hurt it. In failure scenario #1, the undo-
based recovery data does show an availability benefit; this is a
side-effect of the way that the undo tool proxies incoming
SMTP sessions, ensuring availability even when the SMTP
server itself is misbehaving. In the end, the best conclusion we
can draw here is that future work on Undo/Redo recovery
should concentrate on improving the system’s availability dur-
ing the recovery process for both IMAP and SMTP protocols,
so that the obvious correctness benefits of the approach are
not lost as a result of poorer availability.

5. Related work

The notion of benchmarking fault tolerance was first intro-
duced by Tsai et al. [13]; their focus was primarily on hard-
ware-level faults and automated recovery mechanisms. Recent
work has broadened the applicability of so-called dependabil-
ity benchmarks [1] [3] [6] [9] [15] [18], but has mostly over-
looked the human aspects of server system dependability. A
notable exception is work by Vieira and Madeira, who have
studied the recovery behavior of database management sys-
tems in response to injected operator faults [14] [15]; how-
ever, unlike our approach, theirs does not use human
participants and therefore can only evaluate recovery mecha-
nisms that work without human involvement. Likewise, Zhu
et al. propose benchmarks for evaluating and classifying the

In
co

rr
ec

tly
-h

an
dl

ed
m

es
sa

ge
s

0

50

100

150

200

250

Fa
ile

d
SM

TP
C

on
ne

ct
io

ns

0

25

50

75

100

125

Failure Scenario

1 1 1 2 2 2 2 3 3 3 1 2

Fa
ile

d
IM

A
P

C
on

ne
ct

io
ns

0

10

20

30
Session 1: undo tool available
Session 2: baseline

Undo/Redo used
(in Session 1)

Undo/Redo not used
or completed

Figure 3. Summary results. The graphs plot overall correct-
ness and availability metrics for all experiment sessions, en-
abling a direct comparison of Undo/Redo recovery to the base-
line. Each point on the x-axis represents the results for an
individual human participant. The results show a clear correct-
ness benefit when Undo/Redo recovery is used, but also point
out that in some cases, Undo/Redo recovery can reduce avail-
ability compared to the baseline.

recovery behavior of general server platforms in response to
crashes and hardware failures [17] [18], but again do not ad-
dress the human component of the recovery process, assuming
that the system is capable of recovering on its own. Further-
more, neither Zhu’s nor Vieira’s methodology can provide the
kind of insight that ours can offer into the dynamic, time-vary-
ing dependability consequences of the recovery process.

There is obviously a great deal of similarity between our
methodology and behavioral research methodologies used to
study human-computer interaction, and indeed our approach
was heavily influenced by HCI techniques such as those de-
scribed in Landauer’s excellent survey [8] and used by Max-
ion et al. to evaluate dependability effects arising from the
user interface [10]. However, unlike these HCI approaches,
where understanding the human’s behavior is the main goal,
the focus of our benchmarks is to quantify the system, with the
human as a critical but indirect contributor to its behavior. In
that sense our work is most similar to work in the security
community on the effectiveness of security-related UIs, such
as Whitten and Tygar’s study of PGP [16].

6. Discussion and conclusions

Our approach to evaluating human-assisted recovery pro-
cesses is a first step toward incorporating the effects of human
behavior into a dependability-benchmarking framework.
While our approach is still a far cry from a complete bench-
mark, it demonstrates that it is practical to conduct depend-
ability evaluations using people, and that the cost of such
evaluations may well be reduced to the point where a bench-
mark involving humans becomes feasible. In particular, the
compromises—typical of any benchmark design process—
that we made in developing our approach did not limit our
ability to expose illuminating data regarding the behavior of
our Undo/Redo recovery tool. Furthermore, we were able to
obtain those insights with only a handful of human partici-
pants, an inexpensive survey-based faultload development
process, and a non-traditional experimental design that traded
a built-in bias for a smaller subject pool.

Still, there is much research to be done in the area of hu-
man-aware dependability benchmarks. Our approach needs to
be extended to other lifecycle phases besides recovery, such as
problem detection and diagnosis. More work is needed to fur-
ther reduce the cost of our approach, perhaps by teasing apart
the benchmark components that truly require human interven-
tion from those that can be adequately simulated. And better
understanding of variability and learning effects within sub-
ject pools is needed, both to produce more homogenous popu-
lations for a benchmark and to understand how reproducible a
human-driven benchmark can be. Despite these challenges,
we believe that the benefits and significance of human-aware
dependability benchmarks are evident, and we look forward to
the day when they can be found in every dependability re-
searcher’s toolbox.

References

[1] A. B. Brown and D. A. Patterson. Towards Availability Bench-
marks: A Case Study of Software RAID Systems. 2000 USENIX
Annual Technical Conference. San Diego, CA, June 2000.

[2] A. B. Brown and D. A. Patterson. Undo for Operators: Building
an Undoable E-mail Store. 2003 USENIX Annual Technical
Conference. San Antonio, TX, June 2003.

[3] A. B. Brown, L. C. Chung, and D. A. Patterson. Including the
Human Factor in Dependability Benchmarks. 2002 Workshop
on Dependability Benchmarking, in DSN 2002 Supplement.
Washington, D.C., June 2003.

[4] A. Fox and D. Patterson. Self-Repairing Computers. Scientific
American, June 2003.

[5] M. Ivory and M. Hearst. The State of the Art in Automating
Usability Evaluation. ACM Computing Surveys, 33(4):470–516,
December 2001.

[6] K. Kanoun and H. Madeira. A Framework for Dependability
Benchmarking. 2002 Workshop on Dependability Benchmark-
ing, in DSN 2002 Supplement. Washington, D.C., June 2003.

[7] J. O. Kephart and D. M. Chess. The Vision of Autonomic Com-
puting. IEEE Computer 36(1):41–50, 2003.

[8] T. K. Landauer. Research Methods in Human-Computer Interac-
tion. In Handbook of Human-Computer Interaction, 2e, M.
Helander et al. (ed), Elsevier, 1997, 203–227.

[9] H. Madeira and P. Koopman. Dependability Benchmarking:
making choices in an n-dimensional problem space. 1st Work-
shop on Evaluating and Architecting System dependabilitY
(EASY ’01), Göteborg, Sweden, 2001.

[10] R. A. Maxion and A. L. deChambeau. Dependability at the User
Interface. 25th Intl. Symp. on Fault-Tolerant Computing. Pasa-
dena, CA, June 1995.

[11] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
Internet services fail, and what can be done about it? 4th
USENIX Symposium on Internet Technologies and Systems
(USITS’ 03). Seattle, WA, March 2003.

[12] Standard Performance Evaluation Corporation. SPECmail2001,
http://www.spec.org/osg/mail2001/.

[13] T. K. Tsai, R. K. Iyer, and D. Jewitt. An Approach towards
Benchmarking of Fault-Tolerant Commercial Systems. 26th
Int’l Symp. on Fault-Tolerant Computing (FTCS-26). Sendai,
Japan, June 1996.

[14] M. Vieira and H. Madeira. Recovery and Performance Balance
of a COTS DBMS in the Presence of Operator Faults. 2002 Int’l
Conf. on Dependable Systems and Networks. Washington, D.C.,
June 2002, 615–624.

[15] M. Vieira and H. Madeira. Definition of Faultloads Based on
Operator Faults for DBMS Recovery Benchmarking. 2002
Pacific Rim Int’l Symp. on Dependable Computing
(PRDC2002). Tsukuba, Japan, 2002.

[16] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0. 9th USENIX Security Sympo-
sium, August 1999.

[17] J. Zhu, J. Mauro, and I. Pramanick. System Recovery Bench-
marking. 2002 Workshop on Dependability Benchmarking, in
DSN 2002 Supplement. Washington, D.C., June 2003, F-27–28.

[18] J. Zhu, J. Mauro, and I. Pramanick. Robustness Benchmarking
for Hardware Maintenance Events. 2003 Int’l Conf. on Depend-
able Systems and Networks. San Francisco, CA, June 2003.

	Experience with Evaluating Human-Assisted Recovery Processes
	Abstract
	1. Introduction
	2. Methodology, challenges & compromises
	Faultload development
	Participant selection and training
	Experiment design

	3. Case study setup: evaluating Undo/Redo
	Faultload selection.
	Figure 1. Survey of e-mail administrators

	Workload selection
	Participant selection and screening
	Experiment design
	System configuration

	4. Evaluating Undo/Redo: Results
	Figure 2. Time-varying behavior during recovery for one experiment
	Longitudinal data
	Summary data
	Figure 3. Summary results

	5. Related work
	6. Discussion and conclusions
	References

