Submission to HotOS IX, now UCB Technical Report CSD-03-1234

Decentralized systems need decentralized benchmarks

David Oppenheimer, David A. Patterson, and Joseph M. Hellerstein
University of California at Berkeley, EECS Computer Science Division
{davidopp,patterson, jmh}@cs.berkeley.edu

Abstract

Decentralized systems require new benchmarks and new
benchmarking techniques. We propose a general meth-
odology for benchmarking the performability of one
class of decentralized system: peer-to-peer applications
built on top of distributed hash tables (DHTS). Further-
more, we argue that benchmarks for decentralized sys-
tems must be designed and implemented with similar
concern for scalability and robustness as the systems
they are designed to benchmark, implying a need for
decentralized load generation, fault injection, and met-
ric collection. These criteria lead us to propose a bench-
mark implementation that uses a DHT to publish the
faultload description and to store collected metrics, and
uses a DHT-based relational query engine to analyze
benchmark results. Finally, we argue that the fault injec-
tion and monitoring mechanisms required to run such
benchmarks are reusable for online robustness testing,
problem detection, and problem diagnosis, and that they
therefore should be provided as infrastructure services.

1. Introduction

Large-scale decentralized systems such as peer-to-
peer (P2P) and sensor networks have received increas-
ing attention from researchers and industry over the past
few years. For example, researchers have recently pro-
posed decentralized Distributed Hash Tables (DHTs) as
the fundamental building block for a new generation of
globally distributed applications. Although much atten-
tion has been focused on the design of DHTs, techniques
for evaluating key properties such as their performance
and robustness to evolution and failures have not kept
pace. As a result, these systems are commonly evaluated
using simulation or implementations with artificial and
simplified workloads and faultloads!. As DHTs make
the transition from theoretical endeavors to standard
application building blocks, the importance of charac-
terizing their true performance, scalability, dependabil-
ity, and performability (combined performance and reli-
ability) increases. The devil is often in the details, and
evaluation using standardized workloads and measure-
ment criteria is essential to uncovering those details.

We believe the community would benefit greatly
from rich DHT benchmarks, both for designers to evalu-

lThough their true definitions differ slightly, in this
paper we use fault, error, and failure interchangeably to
denote improper behavior of a component.

ate tradeoffs and calibrate models, and for users to com-
pare systems. Because robustness is a key design goal of
these systems, benchmarks for them must be perform-
ability benchmarks, taking both performance and
robustness into account. In this paper we make a prelim-
inary proposal for such benchmarks, addressing the key
issues of benchmark workload, faultload, and metrics.
Further, we argue that benchmarks for decentralized
systems must be designed and implemented with similar
scalability and robustness criteria as the systems they
are designed to benchmark, implying a need for decen-
tralized workload generation, fault injection, and metric
collection. Finally, we describe how the fault injection
and monitoring mechanisms required to run such bench-
marks are reusable for online robustness testing, prob-
lem detection, and problem diagnosis, and we argue that
they thus should be provided as infrastructure services.
In this paper we target systems of tens of thousands
of nodes deployed throughout the world. Examples of
such services include P2P filesharing, document search-
ing within worldwide corporate intranets, and mining
autonomous local government agency databases. Our
goal is to benchmark globally-distributed decentralized
systems in situ rather than using simulation or cluster-
based emulation. This approach provides a level of real-
ism that simulation does not, and it allows us to bench-
mark systems larger than those that can be emulated on
a cluster that a single organization has the resources to
build and operate. The tradeoff is the loss of some
degree of repeatability. We assume that such a globally-
distributed system will experience node and network
failures and other perturbations as the benchmark runs,
but that these events will not happen often enough and
with enough variety to cover the full range of perturba-
tion scenarios of interest to a benchmarker. Thus we
need not only to generate a workload, but also to gener-
ate perturbations above and beyond those that the sys-
tem will naturally encounter, and to account for pertur-
bations that occur outside the benchmarker’s control.

2. DHT and benchmark model

A DHT is a decentralized data structure that assigns
partitions of keys to nodes. We assume that P2P applica-
tions built on top of DHTs have three logical layers. The
distributed object location and routing (DOLR) layer,
which runs on top of the Internet, maps a key to its
owner (the node responsible for the key) and routes a
message to the node responsible for a key. Built on top
of the DOLR layer is the DHT storage layer, which adds



Submission to HotOS IX, now UCB Technical Report CSD-03-1234

persistent storage. This layer supports two operations:
store a <key,msg> pair on the node responsible for the
key, and retrieve the msg associated with a specified key.
Finally, applications are built on top of the DHT storage
layer, though they may use the DOLR layer directly for
some operations. We assume the DHT storage layer sup-
ports, or can be modified to support, a scalable data rep-
lication mechanism that may admit temporary inconsis-
tency. In the remainder of this paper, DHT refers to the
DHT storage layer running on top of the DOLR layer.

Our benchmarking methodology is to measure vari-
ous system metrics over time as a workload is applied to
some layer of the system. We distinguish between exter-
nal or Quality of Service metrics, which are directly vis-
ible to the user/caller of a component, and internal met-
rics, which are not. At various points in the benchmark
run, we insert one or more perturbations and observe
how the metrics change in response. Perturbations are a
generalization of the concept of a fault, including not
only faulty component behavior but also normal events
such as system evolution as nodes join and depart. Thus
a DHT benchmark is characterized by four attributes:
system configuration, distributed workload, distributed
perturbation load, and benchmark metrics. We address
benchmark definition issues in this section, and the cor-
responding implementation issues in Section 3.

We distinguish between benchmarking nodes, which
generate load, collect QoS metrics, and specify the per-
turbation load; and benchmarked nodes, which run the
benchmarked application, collect internal metrics, and
inject and experience injected faults. This is merely a
logical division of tasks; a peer-to-peer system node is
generally both a “client” and a “server,” and is therefore
both a “benchmarking” and a “benchmarked” node.

2.1. DHT workload and configuration

A DHT workload is the stream of requests inserted
into the system, be it at the application layer (e.g., IMAP
message operations), DHT storage layer (e.g., get() and
put()), or DOLR layer (e.g., who is owner(),
send _to_owner()). In contrast to cluster systems, DHT
behavior is heavily sensitive to the topology, perfor-
mance, and reliability of network links among bench-
marked nodes. We therefore suggest that much as the
TPC benchmarks specify the contents of a pre-existing
database on which the workload queries are run, DHT
benchmarks should specify the topology and link char-
acteristics of the network used to run the benchmark (in
addition to the nature of any pre-existing data)l.

! A“best effort” should be made to use the subset of
nodes that most closely matches the requested configu-
ration; the exact configuration used should be reported
as part of the benchmark results. How, and whether, to
add a layer of emulation to make the geographically-dis-
tributed benchmarking network more closely resemble
the requested configuration is an open question.

Microbenchmarks exercise a single operation at a
particular layer of the system, while macrobenchmarks
attempt to exercise the entire API of a layer of the sys-
tem in a manner that reflects the behavior of a typical
application. Almost all DHT evaluations to date have
been microbenchmarks driven by a random workload.,
so we focus on macrobenchmarks here. There are two
ways to generate the macrobenchmark input workload
to a layer of the system: by playing a trace (gathered
from a real system or generated synthetically), or using
a stochastic model designed to reflect typical applica-
tion behavior. One approach for defining a macrobench-
mark workload is to adapt traces from existing geo-
graphically distributed applications that use standard
protocols, using information about where in the network
the requests came from. For example, HTTP request
traces can drive DHT-based content delivery networks,
IMAP traces can drive DHT email systems, AFS traces
can drive DHT filesystems, and SNMP traces can drive
DHT monitoring systems. How to adapt traces from
local-area systems is an open question.

2.2. DHT perturbation load

Due to space constraints, we do not fully explore the
full range of injectable failures in this paper. Among the
fail-stop failures that are relatively straightforward to
inject, and which represent the manifestation of a wide
variety of errors, are application or DHT runtime crash,
hang, or exception; node crash or hang; network inter-
face hang; and network switch or router crash or hang.
Among non-fail-stop failures are switch or router over-
load leading to packet loss. Some failures may have fail-
stop or non-fail-stop manifestations, e.g., protocol
implementation bugs, routing table corruption (in the
DOLR layer or a router), and misconfigurations. Among
the evolutionary perturbations of interest are voluntary
node join and departure. Incorporating the role of opera-
tors in causing and repairing problems (e.g., through
modeling or using real humans) is an open question.

Having defined the set of perturbations of interest,
we must inject them. Akin to the division of benchmark
workloads into micro- and macro-benchmarks, we dis-
tinguish micro- and macro- perturbation loads, either of
which can be inserted in the midst of a benchmark
workload [2]. A micro-load consists of a single event. A
macro-load consists of a series of events whose nature,
timing, and correlations are played from a trace or are
chosen stochastically using a model based on real-world
data. The condition(s) for triggering perturbations may
depend on system state (e.g., aggregate system load) or
events (e.g., reaching a particular point in a program or a
certain time), which may in turn require coordination
among nodes to decide when to inject the perturbation.

2.3. DHT metrics

Application-layer QoS metrics include latency,



Submission to HotOS IX, now UCB Technical Report CSD-03-1234

throughput, precision, and recall. Internal application
metrics (some of which can be viewed as QoS metrics
for lower layers of the system) include time to find an
object’s owner, time to retrieve an object, time to route a
message to an object’s owner, degree of load balance,
degree of replication, and per-request consumption of
CPU, memory, and network resources. Because we
observe these metrics while injecting perturbations, we
are interested in recovery time of the metrics after a per-
turbation, and the degradation in the metric between
injection of the perturbation and system recovery, as
much as we are in their values during perturbation-free
operation. Direct measures of the impact of perturba-
tions include number of users affected, amount of data
affected, and time to detect, diagnose, and repair prob-
lems (be it automatically or by a human). Open ques-
tions include how to define an aggregate performability
metric for an entire benchmark run, and how to charac-
terize a system by measuring performability metrics
across multiple benchmark runs that use different work-
loads and perturbation loads.

Metrics may be expressed in absolute terms or rela-
tive to a more traditional implementation. For example,
a popular relative metric for expressing the cost of rout-
ing through an overlay network is Relative Delay Pen-
alty (# of physical network hops taken when routing
through the overlay / # of physical network hops in the
shortest IP route to the destination).

3. Benchmark implementation criteria

We now turn our attention to implementing the
benchmarking methodology that we have described.
Decentralized systems are more difficult to benchmark
than centralized systems for three reasons: number of
nodes, topological distribution of nodes, and continuous
component failure and recovery. These factors place
certain requirements on the techniques we use for load
generation, perturbation injection, and metric collection.

The large number of benchmarked nodes in the sys-
tem requires scalable load generation (using multiple
benchmarking nodes), scalable metric collection (from
benchmarked and benchmarking nodes), and scalable
coordination of perturbation injection. This demands
autonomous operation whenever possible, scalable
coordination when required, and using only a represen-
tative, perhaps time-varying, subset of nodes as bench-
marking and benchmarked nodes.

Because the behavior of decentralized systems is
highly dependent on the network topology, placement of
nodes in the network relative to that topology, and link
performance and reliability characteristics, nodes must
be distributed topologically to capture the various
“views” of the system from different connection points.

Finally, the large number of nodes and the use of a
wide-area network mean that the system is constantly in
flux--some fraction of components will always be down,

degraded, or recovering. Our benchmark control and
monitoring infrastructure therefore must be robust to
failures, just like the systems it is designed to bench-
mark. This suggests that we use redundancy in load gen-
eration, and redundancy and loose consistency in dis-
seminating control and monitoring data. We are willing
to allow the benchmarking system to produce an
approximate set of metrics if some components have
experienced uncontrolled failures during the benchmark
run, ideally with an indication of the statistical confi-
dence in the result. Likewise, we do not require that all
desired perturbations are actually injected, but we would
like to maximize the fraction that are injected and about
which we are notified. Finally, our data collection must
be robust to interference--we must “subtract” or factor
out perturbations to the system that we do not control, as
well as the overhead of our benchmarking apparatus. To
accomplish this first task, we must constantly monitor
health and performance of all nodes and network links.

In the remainder of this section we propose initial
ideas on mechanisms for decentralized perturbation
injection and measurement that aim to achieve the
above criteria.

3.1. Decentralized perturbation injection

To add fault injection to a component, a component
is instrumented to behave in a faulty way when it is told
to do so, its execution environment is instrumented to be
perturbed or destroyed, and/or a proxy is interposed in a
dataflow path to intercept data and change it to make it
faulty. The primary challenges for perturbation injection
in decentralized systems are communicating the pertur-
bation load specification to benchmarked nodes, obtain-
ing acknowledgement of when the perturbation injec-
tion took place relative to the requested moment, and
implementing distributed injection triggers.

The description of when to trigger a perturbation
must be communicated from a benchmarking node to
the relevant benchmarked nodes. We advocate publish-
ing this information in a (separate) DHT, thereby lever-
aging the DHT’s scalability and robustness. Communi-
cating the perturbation load in this way can happen
before or during a benchmark run. As an aside, if we are
willing to modify the application, DHT storage layer,
and/or DOLR layer, we can piggyback a fault injection
command on a request. For example, “misroute this
message” can be attached to a DOLR-level message, or
“corrupt this message” can be attached to a storage-level
message. This in-band approach allows us to tie a fault
injection command directly to a request, and it ensures
that fault injection actions may only be taken on nodes
involved in processing the request.

We advocate communicating from benchmarked to
benchmarking nodes the acknowledgment that a pertur-
bation took place, and when it took place, by storing this
data in a DHT, in a format that can be queried by a DHT-



Submission to HotOS IX, now UCB Technical Report CSD-03-1234

based P2P query engine. By “joining” the acknowledge-
ment table with the metric tables of interest, the bench-
marker can easily correlate variations in metrics with
perturbation events. Note that a possible alternative to
storing perturbation description and event data in a DHT
is to use peer-to-peer publish-subscribe.

How best to determine when a (possibly distributed)
perturbation injection trigger’s conditions have been
met (or met “closely enough,” if we allow approximate
triggering conditions) is an open question. One
approach is to extend the ideas in [4] to work for very
large-scale systems in flux.

Finally, benchmark usability would be enhanced by
developing a description language to specify perturba-
tions and injection trigger criteria.

3.2. Decentralized collection of metrics

We next discuss the issue of collecting and analyzing
benchmark results. We advocate storing in a DHT, in a
format that can be queried by a DHT-based P2P query
engine, the per-request metrics collected by the compo-
nents involved in issuing and processing a request. The
query engine can then be used to aggregate and analyze
results. This approach offers robustness and scalability
by using the DHT, and flexibility and extensibility by
using declarative queries to analyze benchmark results.

Collected metrics may be inserted into the DHT
offline or online. If done offline, every benchmarked and
benchmarking node records benchmark measurements
locally, and then at the end of the benchmark run bulk-
loads them into the DHT, which is then queried by the
benchmark user. In the online version, metrics are
inserted into the DHT during the benchmark run. The
online approach perturbs the system more than the
offline approach because insertions into the DHT may
cause network traffic, and this must be factored out of
the final benchmark results. But the online approach
allows a benchmark user to obtain incremental results as
the benchmark runs, and the results are less dependent
on which nodes and links are alive at the end of the run.

We believe that SQL queries issued to a distributed
query engine are a natural way to flexibly analyze and
summarize benchmark results. For example, assume
that all benchmarking nodes record in a table KS the
time when they send each application-level request and
in a table KR the time they receive each response,
tagged with a unique id that allows them to correlate
requests and responses. Then the query

SELECT avg(KR.time-KS.time) FROM KR, KS

WHERE KR.id = KS.id

produces the average latency for all requests.

More generally, the mechanisms we need for collect-
ing and analyzing benchmark results are also those
needed for general system monitoring. If we use online
data collection, the difference between analyzing bench-
mark results, and online problem detection and diagno-
sis, is simply a matter of what queries we issue.

For problem defection, we suggest continuously-
running SQL queries (CQ) that generate an alert when
predefined anomalous conditions are met. For example,
we may wish to know when the average application
response time during the last minute is more than 110%
of the average response time during the last ten minutes.
This is accomplished by building on our previous query:

SELECT “alert” AS result WHERE

(SELECT avg(KR.time-KS.time)

FROM KRJ[Range 1 Minute], KS[Range 1 Minute]
WHERE KR.id=KS.id) > 1.1 *

(SELECT avg(KR.time-KS.time)

FROM KR[Range 10 Minute], KS[Range 10 Minute]
WHERE KR.id=KS.id)

Once a problem has been detected, an operator diag-
noses it by issuing ad hoc queries to test her hypotheses
about possible problem causes. Suppose she decides to
investigate the request that experienced the highest
latency during the past minute. To find its id, she issues

SELECT KR.id as iid

FROM KR[Range 1 Minute], KS[Range 1 Minute]

WHERE KR.id=KS.id AND KR.time-KS.time = (

SELECT max(KR.time-KS.time)

FROM KRJ[Range 1 Minute], KS[Range 1 Minute]

WHERE KR.id = KS.id)

Assume that the DOLR layer on each node keeps 1S
and IR tables describing IP network level message sends
and receives (just as the benchmarking nodes did for
application-level sends and receives), and further that
the application-level unique identifier is kept with the
message as it travels through the network. Assume the
IS and IR tables have the following columns: time, id,
and me (the node recording a fact); and that the S table
also has a next column indicating where the routing
layer intends to send a message next. Now the operator
can see how long it took the message from the previous
example to get from hop to hop in the overlay with

SELECT IR.time-IS.time, IS.me, IR.me FROM IR,IS

WHERE IR.id=iid AND IS.id=iid AND IS.next=IR.me

Imagine she finds the latency from node A to node B
(IR.time-1S.time for IS.me=A and IR.me=B) is unusually
high for that message. She can determine whether this is
the case for just that message, or for many recent mes-
sages from A to B, by comparing the A-to-B latency
from the above query with the result of

SELECT avg(IR.time - IS.time)

FROM IR[Range 1 Minute], IS[Range 1 Minute]

WHERE IS.me=‘A’ AND IR.me=‘B’ AND IS.id=IR.id

If the average latency is high, she has identified an
IP network problem. Other queries can investigate alter-
native hypotheses such as the high application-level
latency being due to high CPU load on one or more of
the nodes through which the request passed. More gen-
erally, queries over the data we collect can be used to
find overloaded or misbehaving components. Note that
id allows us to correlate high- and low-level metrics.
Also, the query engine makes it easy to examine system
configuration and health from before, during, and after a
problem manifests, and to compare to past problems.



Submission to HotOS IX, now UCB Technical Report CSD-03-1234

Open questions include how to minimize monitoring
overhead; generate statistically meaningful results using
inconsistent, missing, or stale data, e.g., without using
data from all nodes or all requests (for performance rea-
sons or due to node failures or partitions); improve CQ
efficiency by pushing predicates and aggregation opera-
tions into the network; scope queries, and aggregate
query results, based on network topology or administra-
tive domain (e.g., to receive fine-grained data about
nearby nodes and coarse-grained or aggregated data
about distant nodes); use aggregation to archive histori-
cal data; integrate last-N-events queries with time-based
queries; choose the appropriate design point between
centralized and decentralized monitoring; and replace
hard-coded CQ triggers with an adaptive anomaly
detection mechanism layered on top of the query engine.

4. Related work

The system we have proposed draws on related work
in benchmarking, fault injection, and system monitor-
ing. Benchmarking performability by measuring QoS as
faults are injected is not new [2] [6], and work on per-
formance benchmarking of DHTs has begun [8]. In this
paper we describe a general framework for benchmark-
ing DHT-based applications, raising issues of decentral-
ized fault injection and data collection not addressed in
previous benchmarking work. We also describe work-
loads, perturbation loads, and metrics in more detail
than previous DHT-related work.

Fault injection has a rich history. The projects most
relevant to ours are NFTAPE [9] and Loki [4], two sys-
tems for injecting faults in local-area distributed sys-
tems. In moving fault injection to the wide-area, we
must tackle additional issues of scale and perturbations
outside the benchmarker’s control. We also propose to
integrate our fault injection methodology with a general
benchmarking system rather than using it for testing.

Researchers have built distributed query engines for
P2P systems and have suggested their usefulness for
network monitoring [5] [7]. We do not propose innova-
tion over these systems, but rather point out their useful-
ness in recording and analyzing benchmark metrics and
in drilling down to diagnose problems. Tagging requests
for automated problem diagnosis in a single-node sys-
tem was implemented in [3].

Continuous queries are a new, active area of research
in the database community. The continuous query syn-
tax we present here is loosely based on [1]. We believe
distributed monitoring is a natural application of this
technology, as it allows declarative specification of
actionable conditions without needing to run general-
purpose code outside the query engine. CQ are not
unlike publish/subscribe systems, which may be an
appropriate mechanism for broadcasting CQ results.

5. Conclusion and status

We have outlined a general methodology for bench-

marking large-scale decentralized systems, and have
explored preliminary design challenges that stem from
the scale and frequency of failures in such systems. Cen-
tral to our proposal is using a separate DHT to distribute
the workload and perturbation load specification, and to
collect metrics. Two components our proposed system--
decentralized perturbation injection and decentralized
metric collection--are reusable (the former for testing
fault detection and recovery mechanisms in deployed
systems, the latter for online monitoring and problem
diagnosis), arguing for their provision as a generic plat-
form service. Indeed, the fault injection system can be
used to test the monitoring system, and the benchmark-
ing system can be used to benchmark both. Of course a
generic service raises issues not addressed here of isola-
tion, fairness, usability, and standardizing an API.

We have left as open questions many other important
issues, including the design of a declarative benchmark-
ing/monitoring language, or GUI, on top of SQL that is
integrated with the workload/perturbation load specifi-
cation; how to intelligently explore the “perturbation
space” of applications; and how to accurately correct for
the overhead of data collection and perturbations from
uncontrolled failures. We are beginning to implement a
framework based on the ideas presented here, using the
PIER distributed query engine [5] to collect benchmark
metrics and monitoring data. We are also beginning to
run ad hoc benchmarks to gain experience with work-
loads, perturbation loads, and metrics. We invite collab-
oration with other researchers in exploring the ideas pre-
sented in this paper, and in evaluating their systems.

References

[1] A. Arasu, et al. An abstract semantics and concrete
language for continuous queries over streams and
relations. http://dbpubs.stanford.edu/pub/2002-57

[2] A. Brown, et al. Towards availability benchmarks:
A case study of software RAID systems. Proc. 2000
USENIX Annual Technical Conference, 2000.

[3] M. Chen, et al. Pinpoint: Problem determination in
large, dynamic systems. 2002 Intl. Conference on
Dependable Systems and Networks, 2002.

[4] M. Cukier, et al. Fault injection based on a partial
view of the global state of a distributed system.
18th IEEE Symposium on Reliable Dist. Sys., 1999.

[5] M. Harren, et al. Complex queries in DHT-based
peer-to-peer systems. IPTPS ‘02, 2002.

[6] K. Nagaraja, et al. Using fault injection and mod-
eling to evaluate the performability of cluster-based
services. To appear in 4th USENIX Symposium on
Internet ‘Technologies and Systems, 2003.

[71 R. van Renesse, et al. Scalable management and
data mining using Astrolabe. /PTPS ‘02, 2002.

[8] S. Rhea, et al. CANs need application-driven
benchmarks. To appear in IPTPS ‘03, 2003.

[9] D.T. Stott, et al. NFTAPE: A framework for
assessing dependability in distributed systems with
lightweight fault injectors. 4th IEEE Intl. Computer
Performance. and Dependability Symp., 2000.



