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Abstract

Achieving dependability in large scale infrastructure sys-
tems always requires making intelligent tradeoffs. This pa-
per draws upon ideas from economics and operations re-
search to propose a systematic approach to thinking about
such tradeoffs in terms of the system beneficiary’s utility.
The design process consists of choosing a spanning set of
axes for the design space, explicitly formulating utility func-
tions with respect to each axis of the spanning set, and then
iteratively converging on the design that maximizes overall
utility. We apply this process to the design of a fictitious
online banking system.

1. Introduction

In this paper we describe a process for designing in-
frastructure services, particularly those that are Internet-
based. Examples of such services include airline reserva-
tions (Sabre), e-commerce (Amazon), wide area caching
(Akamai), searching (Google), portals (Yahoo), instant
messaging (AOL), news sites (CNN), web e-mail (Hot-
mail), online auctions (EBay), etc.

We view dependability of a service as an expression
of how well the system’s properties match the system’s
requirements. Successful infrastructure services require
significant amount of functionality, maximum correctness,
must meet usability and maintainability requirements, be
performant, secure, highly available, inexpensive to de-
velop, etc. Decades of computer engineering have demon-
strated the difficulty of simultaneously achieving all these
properties; therefore, making smart engineering tradeoffs
is vital to dependability. Paraphrasing [15], we define
the dependability of an infrastructure service to be the de-
gree in which a match between required and provided lev-
els of availability, reliability, safety, and security has been
achieved.

The importance of properly reconciling service quality,
availability, performance, security, etc. increases commen-
surately with the system’s scale. In small systems, achiev-

ing the right “mix” is typically an optimization, whereas
in giant scale systems [5], sound tradeoffs become indis-
pensable to the very possibility of building these systems.
For example, airline seat reservation systems, faced with
the practical impossibility of detecting duplicate bookings
in real time, delegate such analysis to offline or off-peak
hours, trading consistency for large transaction volume and
high availability. RAID-5 systems, when scaled to hundreds
of disks, have an increased probability of experiencing mul-
tiple simultaneous disk failures, which make the entire stor-
age system fail. This led to the invention of RAID-6, which
trades performance for the ability of tolerating double fail-
ures, hence decreasing the probability of data loss by 2-3
orders of magnitude [7].

There is extensive literature dealing with pairwise trade-
offs, but in practice tradeoffs are always made along more
than two axes at any given time. For example, the Ink-
tomi search engine allows for incomplete results to be re-
turned in response to a search query, in order to obtain in
exchange higher performance, higher availability, and de-
creased system cost. Akamai’s content distribution network
has cache nodes distributed worldwide to improve its level
of performance, availability, and cost, but in exchange the
system trades security and manageability. Finally, when Ya-
hoo chose to implement its own hash table-like data store,
instead of using an off-the-shelf database, it traded cost and
portability for higher performance and more appropriate
functionality. All these tradeoffs move the designed system
closer to the service’s requirements; without these design
choices, the services would likely not have survived.

Software engineers are well aware of multiway tradeoffs
employed in building computer systems, but they seldomly
make these tradeoffs explicit. Consequently, building de-
pendable infrastructure services is still an art. This paper
proposes a way to bring this art one step closer to engineer-
ing, through the definition of:

� a simple model for the space in which design tradeoffs
are made,

� a simple, comprehensive vocabulary for describing
properties that result from these tradeoffs, and
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� a step-by-step process for trading system properties
against each other, such that overall system utility is
maximized.

2. The Design Process

System properties can usually be described in terms of a
small set of “design axes”. Some of these are rather univer-
sal, like data consistency, performance, availability, while
others may be application-specific, like data lifetime, secu-
rity, and interactivity. The process of designing a system
amounts to attempting to maximize the overall utility of the
system with respect to these properties, which we can envi-
sion as axes of a design space. We employ the utility func-
tion concept, as used in economics, to model the level of
“happiness” that the beneficiary of an infrastructure system
derives from different levels of the system’s properties.

Consider the following process:

1. Identify a coordinate system for the design space, i.e.,
a set of axes that span the design space. The notion
of spanning set is used loosely to mean that any inter-
esting tradeoff can be expressed in terms of the axes
in the spanning set. Moreover, the axes need to be
orthogonal, i.e., we cannot express one of them as a
combination of the other axes. For example, security
is orthogonal to performance and availability, whereas
availability is not orthogonal to time-to-fail and time-
to-repair.

2. Formulate what is typically called a “requirements
specification” in terms of these axes, usually the re-
sult of discussions between the client and the system
vendor. Specifically, articulate utility functions with
respect to each of the spanning axes, expressing how
useful a given level of that property might be.

3. Identify major design regions within the design space,
akin to equivalence classes in design space, in which
all designs have a common pattern. For example,
“three-tiered Internet service architecture” would de-
note one such design region. For each design region,
choose an exponent consisting of a representative de-
sign.

4. For each region exponent, find its coordinates (or
ranges of coordinates) in design space. Based on these
coordinates and the utility functions, compute the over-
all utility of that exponent. The implication is that the
utility of the exponent is representative of the utilities
of all designs in that region.

5. Choose the design region whose exponent has the
highest overall utility. If the design is sufficiently spe-
cific, proceed to build it. Otherwise, go back to step 3

and choose subregions of the chosen design region and
drill down into more detail.

To illustrate this process, in the sections that follow we
present a mock design process for an online bank. Our
treatment is more qualitative than quantitative; the use of
specific numbers does not imply rigorousness. Our main
purpose is to provide the intuition for the proposed process,
rather than advocate specific axes or utility functions for the
chosen application domain.

3. The Coordinate System

For the banking application we choose five axes: quality
of data, service availability, performance, security, and total
cost of ownership.

Quality of data reflects how “good” that data is to the
user application. While generally this axis would incor-
porate both the notion of consistency and fidelity, for our
simplified banking example we look only at consistency be-
tween displayed results and the golden copy of the account,
stored in the bank’s database. The quality axis is continuous
in nature and ranges from 0% to 100%.

Availability captures the percentage of read and write re-
quests that are completed satisfactorily by the service over
the lifetime of that service, i.e., the probability that a given
request will be satisfactorily answered [9]. The availability
axis is continuous in nature and ranges from 0% to 100%.
Some services measure availability as the percentage of
time they are available to reply to requests, regardless of
whether such requests are issued or not; we believe such a
workload-independent definition is inaccurate.

Security usually encompasses authentication, authoriza-
tion, confidentiality, integrity, and accountability, which can
be treated separately, if needed. In this example, we will
take the approach of using an ISO standard, ITSEC [1],
which takes all aspects of security into account when eval-
uating system security. The ITSEC, likely the most suc-
cessful computer security evaluation system, was developed
after the Orange Book and is closer to today’s technol-
ogy. There are 7 ITSEC evaluation assurance levels (EAL).
For example, EAL 3 corresponds to a system methodically
tested and checked for security vulnerabilities, with grey
box testing and selective independent confirmation of de-
veloper test results. The toughest level, EAL 7, requires
that a system’s design be formally verified and tested, with
the formal model supplemented by a formal presentation of
the functional specification and high level design, showing
correspondence between design and implementation. There
exist a variety of certified commercial products, such as the
Cisco Secure PIX Firewall 5.2 (EAL 4), Oracle 8i (EAL 4),
Sun Solaris 8 (EAL 4), Hitachi MULT-OS v3 (EAL 6), etc.
The security axis is discrete, taking on EAL values from 0
to 7.
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Quality [%] Availability [%] Security [EAL]

Max. Latency [sec] Min. Throughput [ops/sec] TCO [$/year]

0 100 100980 0 74321 5 6

1 11

0 1180.1

1

0 1000 2000

1

0 1M 3M

1

Figure 1. Normalized utility functions for an example online banking application.

Other possible quantifications of security include a sim-
ple set containment approach, in which higher levels of se-
curity incorporate a larger set of security precautions in-
cluded in the system. Another approach, depending on
the application, is to quantify security according to cryp-
tographic key sizes [17]. [20] proposes a way to evaluate
and quantify the security of storage systems.

Performance is usually viewed as an expression of the
throughput and latency of access. For a general banking ser-
vice we may want to consider both read and update through-
put/latency and perhaps even differentiate based on the par-
ticular data set being accessed. However, in this example
we will only look at a general measure of overall through-
put and latency. The performance axes have a continuous
value set; throughput is measured in operations/second, and
latency in seconds.

Total cost of ownership (TCO) includes hard-
ware/software costs, training, maintenance, technical
support, network connectivity, etc. In this example we use
the per-year amortized cost, with the TCO axis quantified
in dollars/year.

When choosing values and metrics for points on any
of the design axes, system designers will generally choose
units specific to the applications that will use the state repos-
itory they are building.

4. The Requirements Specification

The requirements specification is a collection of utility
functions, one for each axis of the design space, along with
a formula for combining individual utilities into an over-
all utility. It is acceptable for points on the axes to not be
quantified with absolute metrics; what really matters is that
values can be compared to each other. The units used for
measuring utility need to be uniform across all five axes, to

be able to correctly compare utilities throughout the design
space.

Utility functions can be specified at various levels of de-
tail, from qualitative graphs to precise quantitative func-
tions. The right level of detail is generally obtained at the
end of an iterative process, in which utility functions are
successively refined. The general approach we propose for
building these utility functions is to choose salient points
and then qualitatively interpolate between them.

In this example, the formula for combining utilities is
simply a multiplication.

Quality: Certain applications, such as large search en-
gines, routinely reduce completeness of their answers [5],
that, however, would be unacceptable in the case of a bank-
ing application, where consistency between the reported
balances/payments/etc. with the true bank account is cru-
cial. Therefore, the only salient point in this case is the
100% quality point, and Figure 1 shows one of the simplest
utility curves possible: a step function. Any quality below
100% is useless, hence utility 0; once the quality is 100%,
it perfectly meets the requirement of the application.

Availability of the service is the percentage of requests
that are satisfactorily fulfilled by the bank’s web site. Ac-
cording to various surveys, the true availability of the best-
of-breed web sites today is on the order of 98%, so we
choose that as one salient point. For competitive reasons,
we would expect the online bank to find a system with
poorer availability than 98% to be totally useless. The util-
ity of availability rapidly increases until it reaches the order
of 3 nines, after which any further improvements in avail-
ability become rather worthless, as we can count on users
to retry a failed request. This yields a second salient point
at 99.9%. We interpolate and show the resulting curve in
Figure 1.

Security of the service is defined in terms of how useful
the different assurance levels would be, so it is is natural to
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choose the assurance levels as salient points. We could say
any security less than EAL 3 would be considered inappro-
priate for a bank, while an EAL of 5 or above is plentiful—
beyond a certain point, other factors become of greater con-
cern than the security of the service itself (e.g., disgruntled
employees, administrator mistakes, etc.) The levels of 3, 4,
and 5 naturally correspond to different levels of utility.

Performance of the service is described by latency and
throughput. When determining the salient points for la-
tency, we can resort to research that looks at how web re-
sponse times affect the user experience. For example, [2]
shows that the web site performance threshold at which cus-
tomers get frustrated and leave is between 8-11 seconds.
Another study [4] shows that response times of 100 msec or
less give the feeling of instantaneous response, hence any
response time between 0-100 msec should have utility 1.
We interpolate between these points and obtain the latency
utility curve shown in Figure 1. For throughput, in our ex-
ample, we arbitrarily decide that a value below 1,000 op-
erations/second is worthless and any throughput of 2,000
or more operations/second is sufficient. To interpolate be-
tween these two salient points we use the observation in [2]
that there is a linear 50 percent relationship between site
performance and site abandonment.

Generating a utility function for total cost of ownership
is a highly non-technical task. Assume, for the sake of illus-
tration, that the approved IT budget for this project is $1M
for each year of operation, and the total IT budget for all
of the bank’s operations is $3M/year. Therefore, as long as
TCO stays below $1M, the utility of the resulting system is
maximized with respect to cost. It is possible to stretch this
cost up to $3M (at decreasing utility), beyond which it is
impossible to support the system.

5. Finding A Global Maximum

In this section we walk through the iterative process of
converging toward a design that maximizes overall utility.
We repeatedly identify regions of the design space and com-
pute their expected range of overall utility. In the first phase,
there is a wide variety of representative implementations for
the type of services described here; we choose two of them
for illustration.

System 1 is a completely distributed design. The US cus-
tomer base is served by five geographically distributed clus-
ters of web servers. Clients are routed to their nearest front
end via DNS mappings. Behind these front ends lie appli-
cation servers implementing the bank’s business logic; each
application server converses with a local replica of a dis-
tributed database. Any time updates are made, they are ge-
ographically distributed to all replicas using some efficient
mechanism, such as log-based replication.

System 2 is a totally centralized design. One single data
center serves all customers, a single database holds all the

acount information, and there is a single cluster of appli-
cation server instances in the middle tier. A load balancer
distributes requests to the web servers in the front end, that
communicate with the application server.

In the table below we estimate in each column the util-
ity we would get from each system along each axis of the
design coordinate system. For example, the quality for
both systems, since they are implemented on top of ACID
databases, is always 100%, hence a utility of 1. Security
utility for the first type of system is 0, because one can-
not presently assemble such a distributed system from soft-
ware components certified at EAL 3 or better. TCO is better
for the second system because of it being centralized and
thus easier to manage. The numbers shown are somewhat
arbitrary—we chose them to illustrate distinguishing fea-
tures, rather than prescribe certain utility values for online
banks.

Region Quality Availability Security Latency Throughput TCO Overall

1

2

1.0

1.0

0.9 - 1.0

0.2 - 0.4 0 - 1.0

0 0.9 - 1.0

0.8 - 0.9

0.9 - 1.0

0.6 - 0.8

0.5 - 0.7

0.7 - 0.9

0

0 - 0.26

To compute the overall utility range, we multiply the in-
dividual utilities. Based on the results, we choose the design
region that contains totally centralized systems and proceed
to the second phase. In the chosen region, we refine the
System 2 type into two other representative design points:

System 2.1: For the data center we choose a Sun Solaris
8 platform, running the Oracle 8i database server in con-
junction with BEA’s WebLogic 7.0 application server. The
front ends are Netscape Enterprise 3.6 web servers.

System 2.2: The platform is Redhat Linux 7.2. We hire
an outside company to implement a custom database that
offers specific performance and functionality properties not
found in commercial databases. The middle tier is en-
tirely developed in house, and the web front ends consist
of Apache 2.0 web servers.

Similar to the first phase, we construct a table with the
axis-specific utilities of the two possible choices.

System Quality Availability Security Latency Throughput TCO Overall

2.1

2.2

1.0

1.0

0.2 - 0.4

0.3 - 0.4 0 - 0.5

0.5 - 1.0 0.8

0.9

0.8

0.8

0.7 - 0.8

0.8 - 0.9

0.05 - 0.21

0 - 0.13

Based on these estimates, we choose the first option, Sys-
tem 2.1. We only showed these first two phases, but the
process would not stop here—it would proceed with further
refinement of the chosen system, including various config-
uration aspects, choices for finer grain components, etc.

6. Discussion

The example presented here is very simplistic, as our
intention was to illustrate a way of thinking, rather than
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give specifics of the online banking system. For clarity,
we normalized all utility functions and assumed that they
are equally important to the final computation. When this
is not the case, one can simply scale each utility function
appropriately (e.g., if security is more important than other
properties, its maximum utility could be 5 instead of 1). Al-
ternatively, we can give different weights to the utilities in
the combining formula.

6.1. The Design Hyperspace

The six axes used in the above example form a 6-
dimensional space; each possible implementation of the de-
sired system corresponds to a point in this space. For each
point in this space, we can compute its overall utility. If we
consider utility as a seventh axis for this design space, then
the implementations with their utilities describe a discrete
“utility manifold” in 7-dimensional space. Making trade-
offs consists of navigating this manifold in search for the
global utility maximum, a point at which tradeoffs are opti-
mal given the utility functions. As utility functions change
(varying user demands, market pressures, etc.), the utility
manifold changes in shape; as technology changes, new
points may appear or disappear in the design space.

It is difficult to reason in terms of “navigating” a man-
ifold in 7-dimensional space, which is why designers rea-
son mostly in terms of pairwise tradeoffs. However, any
one property often affects two or more of the other prop-
erties, so the overall design process does take place in this
7-dimensional space—a fact that must be recognized and
incorporated in our software development methods.

6.2. Global Plateaus, Not Maxima

In the process shown above, we made the simplifying as-
sumption that the utility manifold is smooth, i.e., no “cliffs”
are encountered when moving from one point to another.
Such cliffs do exist, however [10]: for example, when a
front end node is hit with high traffic, there is a point at
which it starts thrashing, causing performance to drop all of
a sudden. The true aim of the design process is therefore not
an absolute global maximum, but rather a global plateau,
which provides both a high overall utility and a high toler-
ance to disturbances.

If such cliffs are present within a region, choosing an ex-
ponent with a representative utility for the region is more
difficult—it may become necessary to choose smaller re-
gions or evaluate multiple exponents for each region. The
number of phases in the design process is proportional to
the smoothness of the utility manifold: the fewer cliffs, the
fewer phases. Moreover, the shape of the utility manifold in
the neighborhood of a chosen point can reveal some valu-
able tradeoffs that were overlooked, thus guiding the de-
signer in choosing neighboring points to explore.

6.3. Dynamic Runtime Tradeoffs

Unpredictable workload is the norm in large scale in-
frastructures, and over-provisioning to handle all possible
load spikes is most of the time too costly [3]; fast dynamic
tradeoffs are therefore required. Some, like the public tele-
phone system, trade availability for quality by blocking the
initiation of calls in overload situations. Others, such as
CNN.com, reduce richness of web pages to keep availabil-
ity constant during high load periods [16]. We believe our
utility-based approach is well-suited to building adaptable
systems that make tradeoffs at runtime, e.g., by changing
operating parameters. Operators can express requirements
through the utility functions, and the system autonomously
changes system parameters to maximize utility, without re-
quiring human anticipation or authorization of the tradeoffs.
A challenge in applying this method to machine-chosen
tradeoffs is the need to have concrete metrics for the axes
and explicit utility functions.

6.4. Utility Functions Are Hard to Formulate

The design process is complex and almost always in-
cludes multiple interactions with the target system’s benefi-
ciary, to understand what the requirements really are. It is
difficult to make the requirements explicit, and often clients
themselves do not understand their intended use of the sys-
tem. For example, consultants at Oracle Corp. are often
asked by clients to build a data warehouse that is available
24x7. In many cases, however, it turns out that the client’s
updates and accesses will be run in batch mode, and so the
usefulness of 24x7 availability is not much higher than a
somewhat more reduced level, yet the cost of taking the data
warehouse to that level is significant [19]. Luckily, stating
utility functions is easier for systems that both the clients
and the providers have had previous experience with.

Even if many clients do not know what their utility func-
tions are, these functions do exist. They need to be made
explicit, if the resulting system is to be dependable. As
suggested in [13], well-designed graphical tools can guide
users in enunciating requirements, as well as provide “what-
if” analyses to confirm the functions are valid.

6.5. Related Work

In choosing economic tools and concepts to represent
customer requirements, we were inspired by the architec-
ture for Internet service levels proposed by [21] as well as
by the market-based approach to resource allocation de-
scribed in [11]. The field of operations research has al-
ready developed an extensive theory [12] on the use of util-
ities in making decisions and value tradeoffs, which we in-
tend to peruse in our future work. Value analysis [18] is a
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well-established engineering technique that provides a dis-
ciplined, step-by-step approach to identifying and removing
unnecessary cost in product and service design—a similar
approach to what we are trying to develop.

Hippodrome [3] employed an iterative design process to
configure storage systems, similar in spirit to what we de-
scribed here. [6] used a utility function approach for en-
ergy and server resources in large data centers. Extensive
work has also been done in identifying and making pair-
wise tradeoffs in systems; two notable examples include
Bayou [8] and TACT [22]. The idea of exploring global
maxima in a design landscape forms the basis of genetic
programming [14]; in maximizing a fitness function (rather
than an overall utility function), genetic algorithms use the
principles of Darwinian natural selection to converge onto
an optimal solution.

7. Conclusion

In this paper we argued that tradeoffs in computer system
design always take place in a multidimensional space, rather
than just along two axes. Understanding this fact and having
a suitable model is particularly important in large scale in-
frastructure services, where the right tradeoffs are critical to
the very existence of the service. We described an iterative,
high level process based on utility functions that can help
in better matching system properties to the beneficiary’s re-
quirements, hence improving system dependability. We il-
lustrated this process with a simple example of choosing the
right commercial software for a banking service; the same
process also applies to the development of code.
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