
Abstract

Much of the work to date on dependability benchmarks
has focused on costly, comprehensive measurements of
whole-system dependability. But benchmarks should also
be useful for developers and researchers to quickly evalu-
ate incremental improvements to their systems. To address
both audiences, we propose dividing the space of depend-
ability benchmarks into two categories: competitive
benchmarks that take the holistic approach, and less
expensive developer benchmarks aimed at day-to-day
development tasks. In this paper we differentiate the goals
of these two types of benchmarks, discuss how each type
might be appropriately realized, and propose simplifying
assumptions for making them cost-effective.

1. Introduction

Benchmarks serve a number of important functions.
For end-users, they allow systems to be evaluated and
compared prior to purchase. For researchers and system
implementors, they provide a way to quantify design
tradeoffs and a yardstick that helps to measure and inspire
progress. Because the primary goal of benchmarks has tra-
ditionally been to allow comparison of competing sys-
tems, benchmark design has historically emphasized com-
prehensiveness, repeatability, representativeness of real-
life situations, fairness, relevance over time, and indepen-
dence from the specifics of the system under test.

Performance benchmarks have been an integral part of
computer systems research for more than twenty years and
have addressed these issues in various ways. History has
shown that performance benchmarks are commonly used
for two purposes. They are used for competitive head-to-
head comparisons and evaluation of complete systems on
full workloads in scenarios designed to emulate a produc-
tion environment. But they are also used by developers
and researchers who are attempting to evaluate design
tradeoffs and measure incremental design and implemen-
tation improvements. 

Because this latter use of benchmarks leads them to be
run more frequently, developers and researchers com-
monly use a standard comprehensive benchmark as a start-

ing point, and then make simplifying assumptions to
reduce running time and cost at the expense of some sacri-
fice in benchmark realism or comprehensiveness. For
example, researchers commonly run individual bench-
marks from the SPEC CPU [18] benchmark suite, run the
benchmarks on reduced data sets, or run the benchmarks
for a fraction of their normal running time. Similarly,
researchers may run just some of the queries of the TPC-C
[17] benchmark, may run that benchmark using a scaled-
down dataset and query workload, or may ignore certain
tests such as those that verify proper ACID semantics.
These scaled-down benchmark runs allow researchers and
developers to leverage the work that has gone into creating
the comprehensive version of the benchmark while avoid-
ing the high cost of full, audited benchmark runs.

Recent commercial interest in system dependability
has spurred the development of practical dependability
benchmarks [4] [2] [19]. The recent proposals have gener-
ally defined full-scale competitive benchmarks that
attempt to fully address issues such as completeness, rep-
resentativeness of real-life operational environments, fair-
ness, and repeatability. Because they strive for compre-
hensiveness, these monolithic benchmarks are expensive
to run. Moreover, certain attributes of such dependability
benchmarks make them inherently more time consuming,
and therefore more expensive, to run than performance
benchmarks--for example, the need to inject and measure
the effect of many different kinds of perturbations and to
collect data to develop a realistic error model. 

We believe that as is the case for performance bench-
marks, it is important for developers and researchers to be
able to run dependability benchmarks in-house and on a
small scale. Because they would be run more often--in the
course of day-to-day research and development--these
benchmarks must be much less expensive per run in terms
of time and money than full-scale competitive bench-
marks. 

With this observation in mind, we propose dividing the
space of dependability benchmarks into two categories:
competitive benchmarks  that take the comprehensive,
holistic approach, and less expensive developer bench-
marks  that target specific dependability approaches, use
simplified error models, and explore a subset of the space
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of relevant perturbations. In this paper we differentiate the
goals of these two types of benchmarks and propose sim-
plifying assumptions for making them cost-effective while
sacrificing as little realism as possible. Our intention is to
take an initial stab at mapping out the issues related to this
one particular dimension of the benchmark design space;
as a result, this paper is tackles the issue at a very high
level rather than describing an actual implementation.

The remainder of this paper is organized as follows.
Section 2 discusses related work in benchmarking. Section
3 discusses the goals of our framework and maps out the
space of competitive versus developer benchmarks.
Finally, in Section 4 we conclude.

2. Related work

Benchmarks have been recognized for many years as
an essential way to objectively evaluate design choices
and full systems. Benchmarks were initially used prima-
rily to measure and compare performance. Examples of
such benchmarks that are still in use today include the
SPEC CPU benchmark for processor performance [18]
and the TPC-C benchmark [17] for online transaction pro-
cessing systems.

As commercial and research interest in system depend-
ability has grown during the past decade, so has interest in
benchmarking not just performance, but also system
dependability. The systems proposed thus far generally
fall into two categories: those that measure a system’s
overall end-to-end dependability by quantifying system
response to realistic injected errors, and those that infor-
mally assess particular aspects of a system’s dependabil-
ity. These categories can be likened to macrobenchmarks
and microbenchmarks. Proposals that fall into the first cat-
egory include an e-mail server benchmark [2], a bench-
mark of web server response to disk failures in a RAID
system [4], and a benchmark for traditional fault tolerant
systems [18]. Systems that fall into the second category
include ones that evaluate the robustness of UNIX utilities
[11], the robustness of operating system calls [7], applica-
tion response to C library errors [1], and the time it takes
an application to recover from failures [21]. 

Madeira and Koopman describe a general framework
for defining dependability benchmarks [9]. Our division of
the benchmarking space into small-scale (developers) and
holistic (competitive) benchmarks impacts on most of the
benchmark components they describe (e.g., life cycle
phase, operating environment, user perspective, measures,
workload, system under test, upsetload, and procedures
and rules). In this paper is we elaborate on how this
dimension of the benchmarking space impacts on these
components. Our approach is to start with an abstract defi-
nition for a holistic benchmark, and then indicate simplify-
ing assumptions that can be used to make smaller,

cheaper, faster, more targeted versions of such a bench-
mark.

3. Framework proposal

We characterize a system’s dependability as its ability
to provide the desired quality of service in the face of
internal and external perturbations. For the purposes of
this paper we assume a dependability benchmark model in
which an application’s delivered quality of service is mea-
sured over time while a workload and various perturba-
tions are presented to it. The workload is defined as a rep-
resentative external workload, perhaps taken from a
standard performance benchmark, in addition to various
operator maintenance tasks. Perturbations take the form of
hardware and software errors, as well as the effects of
operator actions, such as scaling, upgrading, reconfigur-
ing, or repairing the system, be they beneficial or harmful.
Although incorporating human operators into dependabil-
ity benchmarks presents logistical challenges, studies indi-
cate that human error is the largest single cause of failure
in large-scale Internet services [14]; it is therefore essen-
tial to include human operator activities in any representa-
tive benchmark [2].

The goal of our framework is to explore a dimension
along which dependability benchmarks can be character-
ized. This axis can be thought of as somewhat analogous
to macrobenchmarks versus microbenchmarks. Depend-
ability benchmarks in general should be able to measure a
system holistically. They should also be adaptable to func-
tion on a small scale, for relatively short, inexpensive, iter-
ative, in-house system evaluation. In describing this space,
we focus particularly on simplifying assumptions for mak-
ing developer benchmarks cost-effective and therefore
reasonable to run frequently. 

A number of factors differentiate competitive depend-
ability benchmarks from developer dependability bench-
marks. In this section we describe those related to metrics
and workload, perturbation load, and maintaining bench-
mark relevance and fairness over time.

3.1. Context, metrics, and workload

3.1.1. Approach-specific benchmarks

An important feature of competitive dependability
benchmarks is that they measure quality of service from
the user’s perspective given a standard application work-
load. This gives the benchmarks two important properties.
First, they are independent of, and portable across, the spe-
cific platforms that might be benchmarked (hardware,
operating system, operating environment including opera-
tors, application, etc.). Equally importantly, they are
agnostic to the particular dependability technique(s) used



in the system under test, evaluating only the net effect of
whatever techniques are used. A particular system might
use one or more of various techniques to achieve depend-
ability, for example,

• fault avoidance

• fault removal

• making code modules more robust using wrappers

• improving a system’s usability by operators

• improving a system’s ability to function in degraded
mode in the face of failed components

• improving a system’s ability to recover from arbitrary
failure modes using recovery techniques such as
operator undo or component restart

• reducing time to detect and repair component fail-
ures, through improved system diagnosis and repair
functionality.

Competitive benchmarks evaluate user-perceived sys-
tem behavior in the face of a representative workload and
perturbation load, so they measure the effectiveness of the
mixture of dependability techniques used in the system.
But the use of dependability benchmarks that is of most
interest to developers on a day-to-day basis is more analo-
gous to component-level regression tests. Developers are
generally interested in assessing how much they are
improving a particular system with respect to a particular
dependability property (bugs, robustness, operator usabil-
ity, etc.). In this case a holistic benchmark may obscure or
dilute the impact of the particular modification that is
being made.

We call targeted benchmarks that evaluate one
attribute of system dependability approach-specific
benchmarks. Such benchmarks have already been devel-
oped for use in particular domains. Examples include
robustness tests for operating system interfaces and lan-
guage libraries, static and dynamic correctness tests, user
interface benchmarks, recovery benchmarks, and fault-tol-
erance benchmarks. An analogy can be drawn to running
only the integer or floating point component of the SPEC
CPU benchmark suite when working on improving one of
those components of performance, or only a particular
benchmark within an operating system benchmarking
suite such as lmbench [10] when working on improving
one aspect of operating system performance.

3.1.2. Metrics and workload

One of the crucial issues in designing a benchmark is
deciding what to measure. For competitive benchmarks, it
is important to measure quality of service as perceived by
the system’s end-users. This takes the form of perfor-

mance measures such as latency and throughput, as well as
data quality measures such as correctness, numerical accu-
racy, and data freshness. For developer benchmarks, only
one or a few of these attributes might be measured at a
time. For example, increasing data storage redundancy
might mitigate the decrease in throughput during a failure,
but should not affect data quality during a failure. Also, in
developer benchmarks these attributes might be measured
at the level of individual components--for example, the
response of a RAID subsystem to failure--rather than at
the system’s end-user interface.

Another important issue in designing a benchmark is
the workload. Generating a workload for a competitive
benchmark can be costly because it requires a full-scale
workload generator that draws from an accurate model of
user and operator interaction with the service. A developer
benchmark might simply use a random stream of requests,
or one targeted to exercise just the dependability features
on which the developer is working, rather than a fully real-
istic workload. Similarly, scripted operator tasks that are
targeted at specific areas of concern could be used instead
of real operators or a complete model of operator behav-
ior.

3.2. Perturbation load

Perhaps the most important issue in designing a
dependability benchmark is its perturbation model. In a
competitive benchmark, the set of injected perturbations
should be as realistic as possible, so that the benchmark
predicts how the system will behave in a realistic produc-
tion environment. This means that ideally perturbations
should be taken from a trace of the perturbations encoun-
tered in a similar system deployed in a production envi-
ronment. The trace should include all relevant attributes of
perturbations, including error storms (correlated or cas-
caded errors) and failures due to operator error.

Assuming that developer benchmarks aim to assess
progress in fault removal and improvements in the effec-
tiveness of fault detection, tolerance, and recovery mecha-
nisms, the perturbations that are tested in a developer
benchmark should be chosen to maximize completeness
rather than focusing on representativeness. In other words,
they should focus on covering the largest possible range of
perturbations rather than only those that have been
detected in live systems. One reason for this is that the sys-
tem under development is likely to be somewhat different
from the system that is used to establish a “representative”
set of perturbations. Moreover, even if the “representa-
tive” perturbation load came from a deployed instance of
the system under development, changes that have been
made or will be made to the system could change the type
of perturbations experienced by the system. 

System robustness to the widest range of perturbations



possible is arguably key during development. On the other
hand, it is time-consuming to instrument for and exercise
every conceivable perturbation. Therefore it would be rea-
sonable to use techniques such as control flow analysis or
coverage analysis to select the minimal set of injected per-
turbations to maximize completeness. A less exact method
would be for a designer to develop an approximate pertur-
bation model (one based on intuition about likely perturba-
tions rather than on real data) by analyzing the design of
the system. For example, for human error, cognitive walk-
through could be used to identify the possible sources of
operator error. Note that the approaches we have described
for generating a perturbation load for developer bench-
marks are less costly than collecting event data from real
systems, in line with our goal of minimizing costs for
developer benchmarks.

3.2.1. Reducing the cost of operator involvement

Another important difference between the perturbation
load of competitive and developer benchmarks is in the
the use of human operators as a source of perturbations.

Studies of Internet services [14], large servers [19],
and the public telephone network [8] indicate that human
error is the largest single cause of service unavailability.
Thus, it is important to inject perturbations due to operator
error. These errors may happen when an operator is per-
forming normal maintenance tasks on a system or in the
course of repairing another failure. Because human error is
very system-specific, the best way to inject human errors
is to use a set of live operators, giving them regular main-
tenance tasks and tasks related to diagnosing and repairing
other injected errors [2].

Because competitive benchmarks aim to maximize
realism and are run infrequently enough to make tolerable
a reasonably high cost, it makes sense to incorporate
humans into the benchmarking process. But because we
anticipate developer dependability benchmarks to be run
often, it would be too costly for them to involve humans
every time. Therefore we suggest injecting simulations or
manifestations of human errors during developer depend-
ability benchmarks. First a set of human errors would be
defined, based on experience with similar systems or an
analysis of all possible human errors that could be made.
Psychology research recognizes two general categories of
human error: mistakes, which are errors in planning, and
slips or lapses, which are errors in execution [15]. An
example of a mistake is configuring a load balancing
switch incorrectly due to a misunderstanding about which
machines are part of a service’s front-end and which are
part of its back-end. An example of a slip is a typo in a
command that results in deleting the email mailbox of the
wrong user.

Simulating human errors without real humans can be

done in two ways. It can be done by scripting operator
actions at user interface level, e.g.,  using shell scripts for
command-line interfaces or GUI scripting languages for
GUI interfaces. Alternatively, it can be done by injecting
the manifestation of the operator error at the appropriate
lower layer of the system. For example, a RAID device
driver instrumented for error injection can be used to sim-
ulate an operator who removes the wrong disk after one
disk fails in a RAID array.

Determining an appropriate set of human errors to
inject is different for slips and lapses as compared to mis-
takes. In both cases one might start with a list of the goals
that an operator would have in administering the system,
whether for routine maintenance tasks or in diagnosing
and repairing a problem. To simulate slips and lapses, one
might take each of those goals and enumerate all of the
“correct” ways to implement each of them. Then, one
would randomly add, delete, or modify operations and
map them onto the appropriate user interface operations or
lower-level manifestations. To simulate mistakes, one
might enumerate “incorrect” ways to implement each of
the operations and then map those onto the appropriate
user interface operations or lower-level manifestations. 

The task of simulating slips and lapses would be well
served by a mechanism that allows operator intent to be
expressed declaratively and that then generates correct and
incorrect implementations of those intents and triggers
them at the appropriate point in the benchmark run. Note
that it is more costly to simulate mistakes than slips and
lapses, since for the latter one needs a model of how oper-
ators mis-plan rather than just how they mis-execute.
Observations of the mistakes operators make during the
competitive benchmarks can help determine what operator
errors to inject in developer benchmarks.

We also note that injection of simulated human errors
is an iterative process: the injected workload will necessar-
ily change as systems improve and what used to be impor-
tant causes of failure are replaced by other, previously
more minor causes of failure that are not yet addressed.

Humans could be used occasionally in developer
benchmarks if the cost of doing so can be sufficiently
reduced, e.g.,  by using as few human subjects as possible.
This raises the question of how to make statistically mean-
ingful conclusions about human error from small operator
populations. Fortunately, user interface studies suggest
that only between five and twenty subjects are truly neces-
sary to obtain reasonably representative results [3] [13]. If
a small group of operators is used repeatedly, there is the
question of how to prevent those operators from learning
all the tasks they will need to perform, thereby being able
to anticipate the tasks and thus not acting as an operator
who performed a particular task for the first time would.
To address this problem, one could adapt the approach that



is used when testing pilots in cockpit simulators, having
the benchmark auditor select the errors and maintenance
tasks that the operator will have to deal with, randomly
chosen from a larger set of possible tasks. This selection of
a random subset of tasks also allows the same operators
who have already participated in the study to participate
again, since they will likely be exposed to new tasks that
they won’t have learned.

3.2.2. Exploring the perturbation space

Another issue related to benchmark cost, whether for
competitive or developer benchmarks, is how to select
which perturbations to inject out of the space of all possi-
ble perturbations. Even without human operators it is too
costly to inject all possible perturbations—whether the
perturbations are due to hardware, software, or humans,
they each may require a nontrivial amount of time to
recover from. Therefore it is useful to select only a subset
of all possible perturbations to invoke. 

Our proposal is to expand the random task selection
technique described at the end of the previous section, to
apply to all perturbations injected in a benchmark. The
benchmark designer would establish a set of equivalence
classes of perturbations. and randomly select some subset
of each equivalence class as the set of perturbations to
invoke. For example, a few possible equivalence classes of
software perturbations might be pointer errors, incorrect
API usage, synchronization errors, and control flow errors.
A few possible equivalence classes of hardware perturba-
tions are CPU failures, memory failures, network interface
failures, and disk failures. A few possible equivalence
classes of perturbations due to human error are software
configuration errors, hardware configuration errors, and
errors in managing user accounts and storage. 

Although the most complete benchmark would inject
all possible perturbations, and the most representative
benchmark would inject perturbations according to a
model of observed events, the most cost-effective bench-
mark should inject the minimal set of perturbations neces-
sary to assess the dependability behavior of the system
with respect to the perturbation classes that are of interest,
thereby decreasing the amount of time for which the
benchmark needs to be run.

3.3. Benchmark relevance and fairness over time

An issue that arises in both competitive and developer
dependability benchmarks is the need to keep the bench-
mark relevant over time. Four factors are at work to make
a benchmark obsolete: changes in the typical workload,
changes in the typical perturbation load due to changes in
the system(s) being benchmarked, and attempts to game
the benchmark. The question then is how to keep the

benchmark relevant without incurring undue cost.
By using standard performance benchmarks as the

workload, the workload of dependability benchmarks
automatically tracks the typical workload for the bench-
marked application. Developers might want to benchmark
individual system components, but to do that they can
record and replay the component API-level interactions
that were caused by the standard benchmark load.

Changes in the system(s) being benchmarked invali-
date a benchmark’s assumptions with respect to perturba-
tion load. These changes happen for different reasons in
competitive and developer benchmarks. In competitive
benchmarks, we expect the most common errors to change
over time as the dependability field addresses the impor-
tant system dependability challenges. Indeed, longitudinal
studies of failure causes over time suggest that the fre-
quency of various causes of failure does change with time
as technology develops [12].1 For competitive bench-
marks, we can use a standard error dataset collected from
real systems to determine an appropriate perturbation load.

In development benchmarks, for a single system we
expect that the set of problems most deserving attention
(i.e., that incur the longest time to repair, that cause the
most significant degradation in quality of service, or that
cause data loss or corruption) will change as the system’s
developers improve those attributes of the system. For
example, user interface improvements made to the opera-
tor’s interface might drastically change the set of possible
human perturbations, rendering some irrelevant or not
applicable, and adding other new ones. 

Finally, for competitive dependability benchmarks to
be relevant over time, they must be designed so that they
are difficult to game. Attempts to game the benchmark
might include hardcoding error predictors specific to the
benchmark in order to identify and react to the precursors
of benchmark-specific errors. Likewise, operators might
be artificially trained to identify error precursors and to
prevent a failure that would normally result. We attempt to
address these issues using stochastic selection of errors to
inject from the equivalence classes described in Section
3.2.2. Over longer time-scales, gaming is addressed by
changing the standard perturbation workload.

4. Conclusion

We have described a division of the space of depend-
ability benchmarks into competitive benchmarks and
developer benchmarks. Competitive benchmarks aim to
maximize realism without cutting corners, but they may

1 Collecting data about the causes of failure in real systems is time-
consuming and expensive. We therefore advocate the creation of a neu-
tral organization that would collect and aggregate failure data from
deployed services to reduce the cost of obtaining this data. It would be
logical for this to be done by the same organization that maintains and
audits the dependability benchmark.



incur significant time and effort to run and therefore would
be run infrequently. Developer benchmarks are approxi-
mate, targeted versions of the competitive benchmarks
designed to be run frequently during the development pro-
cess. They sacrifice some realism and comprehensiveness
in return for cost savings. The two types of benchmarks
differ in whether they benchmark specific techniques or
systems as a whole, the design of their perturbation model,
and their approach to incorporating human operators,
among other factors.

The issues described in this paper lead to a number of
additional research questions. One of the more interesting
is how to correlate the results from developer benchmarks
to those of competitive benchmarks and/or to overall sys-
tem dependability. A related question is how to combine
the results of developer benchmarks into a measure of
overall system dependability, in the absence of a single
holistic test, much as SPEC CPU synthesizes an overall
performance metric from multiple benchmarks in the
SPEC CPU suite. Finally, the notion of approach-specific
benchmarking raises the question of whether it is feasible
to compare the cost-effectiveness of different approaches
to dependability. One possible approach that could apply
for all dependability techniques is to measure the financial
cost of implementing the various techniques and to com-
pare those results to the prevented cost of downtime for a
generic service. In closing, we note that an implementation
of one or more real dependability benchmarks is necessary
to truly demonstrate the usefulness of any of the ideas pre-
sented here.
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