
Measuring End-User Availability on the Web: Practical Experience

Matthew Merzbacher
University of California, Berkeley

merz@eecs.berkeley.edu

Dan Patterson
University of California, Berkeley

patter@uclink.berkeley.edu

Abstract

For service applications on a network, measuring
availability, performance, and quality of service is critical.
Yet traditional software and hardware measures are both
inadequate and misleading. Better measures of availability
that incorporate end-user experience will lead to
meaningful benchmarks and progress in providing high-
availability services. In this paper, we present the results of
a series of long-term experiments that measured availability
of select web sites and services with the goal of duplicating
the end-user experience. Using our measurements, we
propose a new metric for availability that goes beyond the
traditional sole measure of uptime.

Keywords: availability, retry, metrics, dependability

1. Introduction

The World Wide Web has revolutionized commerce.
Goods, services and information are meant to be available
nonstop and the vitality of online businesses depends on
ensuring this high availability. But how do we measure
availability? The traditional measure is uptime, calculated
by taking the percentage of time servicing requests relative
to total time (excluding scheduled downtime). This
availability is typically reported as a number of “nines”, a
measure within an order of magnitude. Four nines of
availability equates to 99.99% uptime (just under an hour of
unscheduled downtime per year). Currently, server
manufacturers advertise that their products offer six or more
nines (less than thirty seconds of unscheduled downtime per
year).

Experience shows these numbers to be misleading – no
web sites are anywhere near as robust as their hardware and
server software alone. The advertised numbers reflect
performance under optimal operating conditions, rather than
real-world assumptions. Any meaningful availability
measure must capture the end-user experience, which
includes several independent components: the network,
multiple server software layers, and separate client software
and system. More meaningful measures of availability will
help direct development of future systems, forcing focus on

the real sources of downtime instead of a single number
and an unrealistic operating environment [2] [3].

In order to measure existing systems, undergraduate
students in a joint class between Mills College and UC
Berkeley devised and ran an experiment over several
months to on several prominent and not-so-prominent
web sites. Our experiment made hourly contact with a
list of sites and, in some cases, performed a small
transaction. We measured and analyzed the responses in
terms of success, speed and size. Our analysis shows that
local and network conditions are far more likely to
impede service than server failure.

1.1. Related work

There are several systems and products available that
attempt to monitor and measure the end-user experience,
such as Topaz [5], SiteAngel [1], and Porvio [7]. These
products identify weak points in the end-to-end
experience by emulating transactions, but are geared
toward measuring performance in terms of transaction
speed (and causes of slowdowns) rather than availability.
In general, they are trying to monitor and measure end-
user service-level agreements. Other services, such as
Netcraft [6], monitor and report server availability and
reliability, but do not measure end-user experience.

In contrast, our objectives were to measure the end-
user experience in terms of availability (including, but
not limited to response time) and locate common sources
of trouble. Based on our results, we also evaluated the
efficacy of retry, a step absent in the other techniques.

2. Experiment

Our experiment, coded in Java, accessed a variety of
different sites, ranging from local machines to servers
around the world. By including local URLs, we could
determine a baseline response time and network delay
and evaluate local problems. The experiment ran hourly
for six months on machines on two campuses, UC
Berkeley and Mills College. Both colleges are located in
the San Francisco Bay Area (California, USA) and share
some network connections to the outside world.



Local (82%) Medium Network (11%)
Severe Network (4%) Server (2%)
Corporate (1%)

To avoid problems with regular access, the experiment
was delayed by a random number of minutes at the start of
each hour, so it might run at 3:11 and then 4:35.

We present results from three prominent sites that
characterize the behavior that we observed:
a) An online retailer, with international country-specific

versions of its site
b) A search engine, where we executed several searches
c) A directory service, again with country-specific

versions of its site
We also measured results from sites providing news,

auctions, and other services, but we do not include the
specifics for those sites, as they are qualitatively similar.

3. Results

Quantifying availability with a single number is
impossible. In addition to the basic question of whether or
not we received a response, we must also consider whether
the response was partial or complete and how long it took to
arrive. Further, our model must also allow for retry when
failure does occur.

We start by presenting the raw “success or failure”
numbers for each service. We factor out different kinds of
errors from our data to try to determine where errors occur.
Our results are summarized in Table 1.

Table 1: Availability under various assumptions

All Retail Search Directory
Raw .9305 .9311 .9355 .9267
Ignoring local
problems

.9888 .9887 .9935 .9857

Ignoring local
and network
problems

.9991 .9976 1.00 .9997

Ignoring local,
network and
transient
problems

.9994 .9984 1.00 .9999

We describe the detailed meaning of each row in
subsections 3.1 – 3.4. Briefly, the first row is the overall
frequency that each site returned its data both perfectly and
quickly, the second row excludes local problems on the end-
user machine, the third row further excludes problems with
the network, and the fourth row also excludes any non-
repeatable problem. What remains are persistent problems
that are likely happening at the company’s website or
throughout the corporation. So, for example, the search
engine failed about 6.5% of the time, but that was mostly
due to local problems on our experimental platform. After
local and network problems were eliminated, the search site
never failed.

The pie chart in Figure 1 shows the frequency of
different kinds of errors, each described in detail below.

Figure 1: Types of errors

3.1. Local problems

By far the most common causes of unavailability
were local problems on our test machines, including
system-wide crashes, system administrator configuration
errors, client power outages, attacks by outside hackers,
and a host of other troubles. No particular problem was
especially more common than another – there were no
few characteristic local errors where one could focus
preventative energies. However, almost all had a
component of human error that either caused or
exacerbated the problem.

Sometimes, for example with power outages, the
trouble would be resolved by the next hour, while other
troubles required considerably more intervention. Part of
this was because we ran our experiments on multi-user
server machines, but individual workstations should fare
no better. Our machines, while in an academic setting,
were relatively carefully administered by professional
systems administrators and were more stable than typical
campus machines. Other students and faculty also used
them only sparingly – almost an ideal set-up.

In summary, our key observation:

Local availability dominates the end-user experience

Factoring out local outages, as done in the second row
of Table 1, provides a better estimate of availability
before the so-called “last mile” without considering the
end-user.



3.2 Losing data

A second kind of unavailability occurred when some, but
not all, of the requested data was retrieved. We measured
the size (in bytes) of data returned. This value fluctuated
slightly from hour to hour as sites updated or as
advertisements changed. However, when size dipped below
a fixed threshold, it indicated a problem. A size of zero
clearly shows unavailability, but even if the site returned
with a radically small size, we believe that this indicated
incomplete data. More likely, anything less than 4KB
returned indicated some error, such as 404 (page not found).
We compared data between our two experimental platforms,
and in cases where neither location returned close to the full
size, ascribed it to server error.

3.3 Corporate failure

Where they existed, we also accessed international
versions of the server sites. Naturally, such accesses took
longer, although they frequently had less variance than the
US versions. Some failures spanned all sites for a particular
enterprise – both US and international. We call such failures
“corporate” failures and indicate them on the failure chart.

3.4 Timely results

Another type of unavailability is when a site returned
successfully, but slowly. The important consideration of
what is “too slow” is hard to define in a strict sense, so we
went about this a couple of ways. The first was to chart

“availability versus time”, shown in Figure 2. This graph
plots expected availability against the length of the wait.
From it, a user can determine how long to wait for a certain
degree of availability (e.g. 99.9%) or the availability found

when waiting for a fixed time (e.g., 10 seconds). As
expected, the graph is fairly flat until it gets above 99%,
at which point the time needed to wait approaches grows
exponentially.

As with size, we chose a threshold for time, marking
sites above the threshold as unavailable. This kind of
error can indicate network delays, although it may also
indicate an overloaded server. Ignoring such slow-but-
successful errors yielded the results in the third row of
Table 1. In the pie chart, we divide timing problems into
“medium” (ten seconds) and “severe” (thirty seconds).
Ten seconds is well above the normal return time for all
the sites studied. Above thirty seconds, even large
changes in the threshold don’t have much impact on the
final value.

After client errors, one-time network errors (medium
and severe) were the most frequent kind of error.

3.5 The effect of retry

When presented with an unavailable web site, users
often retry at least once. Whenever sites were
unavailable for one of the aforementioned reasons, we
checked the failure for persistence. That is, for each
error, the data was inspected to see if the error repeated
when the site was accessed again in the next hour. This
allowed us to categorize the errors, differentiating one-
time failures from problems that persisted for many
hours. Such analysis is particularly useful for sites with a
long delay, because it is difficult to pinpoint the source
of the delay in the chain between user and server. When
a single site is consistently slow relative to other sites, it
suggests trouble at (or near) the server1. In any case, by
measuring the availability of the site after retry, we were
able to more accurately measure the total user
experience. The final row of Table 1 includes only sites
that experienced persistent inexplicable downtime.

Table 2: The value of retry

Error All Retailer Search Directory
Client 0.2667 0.2706 0.2647 0.2648
Medium
Network 0.8621 0.8704 0.9286 0.8318
Severe
Network 0.7895 0.9231 1.00 0.6889
Server 0.9111 0.7857 1.00 0.9600
Corporate 0.4210 0.3125 1.00 n/a

1 From the end-user perspective it is impossible to
distinguish a server failure from a network failure near
the server. Further, in cases where there is no response,
it is impossible to distinguish server software failure
from hardware failure.

0

10

20

30

40

50

60

0.95 0.96 0.97 0.98 0.99 1

Availability

T
im

e
(s

ec
) retailer

search

directory

Figure 2: Time grows quickly at high availability



Table 2 shows how well retry overcomes each class of
failure. At the client, most errors were persistent, and so
retry had a limited effect, while retry was much more
effective for most other kinds of problems. Corporate errors
were different; the vast majority of corporate errors
occurred at the retailer site, and when they did they were
largely persistent.

3.6 Persistent non-local failures

Once local and one-time errors are removed, only a few
errors remain. The distribution of these more severe errors
(shown in Table 3) is domain-dependent. For instance, the
directory site was much more prone to persistent network
problems, suggesting a problem with the connection to their
international sites. By contrast, the retailer site was more
prone to corporate errors, due to the added complexity of
having to deal with storing user information. This site also
suffered persistent problems with its servers, and a handful
of times when all editions of the site worldwide had to be
taken offline – a corporate disaster.

Table 3: Persistent errors by type

4. Analysis

Our retry period of an hour is unrealistically long. In
practice, the likelihood of retry, number of retries, and the
time before the user stops retrying are based on several
domain- and user-dependent factors. Users may retry
immediately to try to overcome a short-term problem, but, if
presented with persistent unavailability, may continue to
retry or return after some time. Economists know that
shoppers in conventional stores, when thwarted in making a
purchase, often will find another source for the desired item
or skip the purchase entirely [4]. There is no reason to
expect that e-commerce sites, especially where competition
is easily found, would be any different. However, there are
certain sites where users, even after an extended outage, will
retry. The likelihood of retry is determined by:
a) Uniqueness – if a site offers unique service, goods, or

information, then there is less competition. This
increases the chance of retry, even after a long wait.

b) Import – the value and cost of the transaction to the
user is a key factor in retry. The more costly and
important the transaction, the more likely to have retry.

c) Loyalty – users exhibit faithfulness when browsing
the web. The higher the degree of loyalty, the
longer the retry period.

d) Transience – the length of delay before retry is
inversely proportional to the speed at which the
content of the site changes. That is, sites where the
information is highly transient are unlikely to have
long-term retries, while sites that don’t change (and
whose content may well be unique) are more likely
to have a long retry period.

5. Conclusion

This experiment was designed to model the user
experience, and was successful. We found about 93%
raw availability, but the great majority (81%) of errors
that occurred were due to errors on the local side that
prevented the experiment from being run. Removing
local and short-term network errors, availability
increased to 99.9%. Lastly, we saw the effect retry had
on the availability, and found that, while local errors
were reduced by only 27%, non-local errors fell by 83%.
It’s clear that local availability has the largest impact on
the user experience. Also, when local problems are
factored out, retry becomes a strategy that cuts error
substantially. When removing local and network
problems and retrying, we generally get at least three
nines of availability, which, while lower than what is
found in an ideal environment, is still respectable.

There are several areas in which this work can be
expanded. The first is to continue the experiment and
refine our availability numbers in the final row. In
several cases, the number of errors is just above the
granularity of the experiment. Also, the experiment
should be distributed to distant sites so that we can better
assess the source of errors. Lastly, we need better
experiments to measure the efficacy of retry, both in the
short-term and in the longer-term.

With better measures of availability, we can devise
test suites and benchmarks that will lead to more reliable
systems and the pinpointing of sources of failure.

6. Acknowledgements

We thank the students from Mills College and UC
Berkeley who participated in a joint class and helped
design and implement this experiment. We also thank
the members of the ROC research group, who provided
valuable feedback on our work. Thanks to the referees
for their valuable commentary on this work. Lastly, we
thank the National Science Foundation for generous
support of this research.

Error Retailer Search Directory
Medium persistent
network 7 3 18
Severe persistent
network 2 0 14
Server persistent errors 3 0 1
Corporate persistent
errors 11 0 0



7. References

[1] “Building an Internet-centric Monitoring Infrastructure”, ASP
News Review, September 2001.
http://www.aspnews.com/strategies/technologies/article/0,2350,
10584_924571,00.html

[2] A. Brown and D. A. Patterson, “To Err is Human”,
Proceedings of the First Workshop on Evaluating and Architecting
System dependabilitY (EASY '01), Göteborg, Sweden, July 2001.

[3] A. Brown and D. A. Patterson, “Embracing Failure: A Case for
Recovery-Oriented Computing (ROC)”, 2001 High Performance
Transaction Processing Symposium, Asilomar, CA, October 2001.

[4] R. H. Frank and B. S. Bernanke, Principles of Economics,
McGraw-Hill/Irwin, New York, 2001, pp. 92-3.

[5] “Topaz: The Complete Solution for Application Management”,
Mercury-Interactive, December 2001. http://www-
svca.mercuryinteractive.com/products/topaz/index.html

[6] “Netcraft: What’s that Site Running?”, Netcraft, December
2001. http://www.netcraft.com

[7] “Quality of Experience: measuring true end-to-end Web
performance”, Porvio, December 2001.
http://www.porivo.com/peerReview/Porivo_paper.pdf


