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Abstract

We proposea structuring model, called recursve
restartability aimedat controlling the amountof end-
to-endunavailability andimproving the measurability
of software infrastructureswith high availability re-
guirements.Recursie restartabilityexploits the ben-
efits of restartsat variouslevels within comple soft-
waresystemsandrelieson anexecutioninfrastructure
to monitor, cure,andrejuvenatesoftwarecomponents.
We shav how systemarchitectscanmeasureandrea-
sonaboutthe availability of their systemsaslong as
thesearerecursvely restartable.

1 Intr oduction
Rebootscanandshouldbe turnedinto a reliabletool
for achiezing high availability in critical software in-
frastructures. Although rebootsare not considereca
gracefulwayto keepasystenrunning,mainlybecause
mostsystemsrenot suitablydesignedrestartinghas
a numberof valuableproperties.We proposea struc-
turing modelcenteredaroundthenotionof fixing bugs
throughreboot. This modelsystematizesa numberof
known techniquesin anattemptto turn “HA folklore”
into awell-understoodool.

We alsocontendhat,besidesigh availability, mea-

scribesrecursve restartability— our proposedstructur
ing modelfor highly availablesoftwaresystems- and
sectionb describesiow recursvely restartablesystems
arehighly measurablandmale availability evaluation
tractable.Section6 describesriefly our plansfor fu-
turework, andsection7 concludes.

2 Why Restart-BasedHigh Availability?

We believe thatrebootsarea valuabletool for running
infrastructuresthat provide serviceswith high avail-
ability requirements. In this sectionwe will shav
how the“restartconcept, commonlyviewedasanevil
sledgehammercanin factbe turnedinto a fine grain
scalpelthatimprovesthe availability of suitablystruc-
turedsystems.

One of the largest sourcesof unavailability in
todays software systems are latent and pseudo-
nondeterministicdougs [13, 12, 3, 8, 1]. Commonly
known asHeisenlogs, they aredifficult to reproduce,
or dependon the timing of external events. Tripped
by araceconditionor otherunforeseermircumstances,
they causesystemso crash,deadlock,spin, livelock,
leakmemory createandusedanglingpointers corrupt
theheap etc. Systemadministratorsvill readilyattest
that, often the besthigh-confidenceway of bringing
sucha “wedged” systembackto normalis to restart.

surability is animportantrequiremenfor dependable Evenif the sourceof suchbugscanbe tracked down,

software infrastructuresand mustbe anintrinsic part
of thedesign.Justlike detugability andperformance,
measurabilitycannotbe anafterthought.
Thepapermprovidesmotivationfor usingrestartsasa
way to achieve high availability in section2, andsec-
tion 3 arguesfor why measurabilityshouldbeincluded
asafirst-classcitizenin the designof softwareinfras-
tructuresfor highly available services. Section4 de-

it maybemorecost-efective to simply live with them,
aslong asthey occursuficiently infrequentlyandre-
booting allows the systemto work within acceptable
parameters.As comple«ity increaseswe canexpect
Heisenligsto becomeeven morefrequent,makingit
increasinglymoredifficult to achiare high availability.
Although rebootsare dreadedby mostof us, they
do have threeimportantpropertieshatmake themde-



sirable. First, arestartwill unequivocallyreturn soft-
ware to its start state which is usually the bestun-
derstoodand besttestedstateof the system. For ex-
ample, the Patriot missile defensesystem,useddur
ing the Gulf War, had a bug in its control software
thatcould be circumwentedonly by rebootingevery 8
hours[14]. It wasdueto anerrorin a mathematical
computationwhich would accumulateandeventually
renderthe systemineffective.

Second,rebootsprovide a high confidenceway to
reclaimresoucesthat are staleor lealed. At a ma-
jor Internetportal, the front end Apacheweb seners
areroutinely quiescedkilled andrestartedin orderto
controlknown memoryleaksthat accumulateguickly
underheavy load.

Finally, thethird advantages thatrebootingis easy
to undestand and employ Simple mechanismsjn
general,benefitfrom being easyto implement,easy
to dehug, andeasyto automate.

Basedon thesepropertieswe arguethatit is possi-
ble to improve overall systemavailability for ary in-
frastructure providedit is suitably structuredandwe
canindependentlyrestartcomponentghat have gone
astray It is critical thatthe systemstructuresynegize
with a restart-basedigh availability solution,andwe
describesucha structurein section4. It is calledre-
cursive restartability and, in proposingit, we arein-
spiredby the beneficeffectsthatthe ACID transaction
modelandthe objectmodelhadon the quality of soft-
ware.Not only did theseconceptgyreatlysimplify the
designof complex softwaresystemsbut they alsopro-
videda cleanframework within which to reasorabout
thebehaior of suchsystems.

3 Measurability —A Critical SystemProperty

Reasoningboutsoftwareinfrastructuress becoming
increasinglymoredifficult, dueto their scaleandcom-
plexity. A penasive exampleis that of the Internet,
which appeardo have taken on alife of its own; most
of therecentstudiestreatit asa little-understoodsys-
tem that requiresexperimentalratherthantheoretical
investigation. The systemsthat are particularly sub-
jectedto suchincreasesn scalearetheinfrastructures
we dependon in our day-to-daylives. Fromair traffic
control to healthservices banking,and e-commerce,

2

we interactand count on the availability of various
softwaresystemsat every stepwe make.

To counter the increasingincomprehensibilityof
software, we mustgive infrastructureoperatorsbetter
tools for designing,acquiring,and tuning highly de-
pendablesystemsSuchtoolsrequireareliableway of
measuringaswell asreasoningabout,the availability
of their systems.

Availability is usuallydefinedin termsof the mean
time betweenfailures (MTBF) and the meantime to
repair (MTTR) as the expressionMIBE_MITR = Al
thoughthe expressionis simple, measuringMTBF is
difficult, becauset requiresthat we compresstime
intenals of yearsor decadedo shorttime spansfor
experimentalpurposes.The difficulty of suchexperi-
mentsis compoundedy the needto develop a fault-
load thatis representate of whata deplo/ed system
may encounterMoreover, experimentsaaimedat mea-
suringthe MTBF of large scaleinfrastructuresresim-
ply intractable.

Consequentlythe availability characteristic®f to-
day’s productionsystemsare usually evaluatedbased
on the “gut feelings” of more or lessskilled people.
We contendthat,assessintheavailability of asystem,
whetherbasedn gut feelingsor usingcomprehense
tools, canbe madea lot easierwhenthe systemwas
designedwith thattaskin mind. We thereforeargue
for measuability asa built-in propertyof the system,
andbelieve thatrecursve restartabilityprovidesa suf-
ficiently flexible framewnork for measurability

Deployed software systems undego constant
changeand reconfiguration but changeis the anath-
emaof dependability Highly availableinfrastructures
must, therefore provide the right structureandhooks
for ongoingavailability measurementsOne example
of sucha hookarestatisticsof how oftenandfor how
long eachsubsystenwasunavailable/ailed; basedon
how thesesubsystemsre composedinto the larger
system,we can reasonaboutthe overall availability
characteristics,aided by structure, modularity and
abstraction.

Similarmechanismbave longbeenprovidedfor the
sale of performanceneasurementppothatthelevel of
platformsandapplications Examplesangefrom per
formancecountersand cachemiss countersin CPUs,
to lock grab/delaycountersin databasesystemsand



accessnetricsin web seners. Performanceneasures in which collectionsof components/subsystermanbe

areevenusedin somedevicesto provide fail stopbe-
havior, suchasl/O subsystemshatattemptto predict
imminentfailures.

Finally, a systems availability cannotbeconsidered
in isolation. End-to-endavailability is the resultof a
tightinterplaybetweersoftware,ervironment,andad-
ministrationprocess. In fact, the Gartnergroup esti-
matesthat40% of downtimein corporateénformation
infrastructuresiredueto managemergrocesdailures,
with the remainderof 40% due to application fail-
ures,andonly 20% dueto hardware breakdevn [17].
It is for this reasonthat we provide eachrecursvely
restartablesystermwith anexecutioninfrastructurede-
scribedin the next section,to improve an administra-
tor's ability to reasoraboutthe entiresystem.

Having motivatedtheuseof restart-baselbighavail-
ability andtheinclusionof measurabilityasa coresys-
tem property we now proceedto describerecursve
restartability a structuringmodelwhich satisfiesboth
theserequirements.

4 Recursiely Restartable Structures

Themaingoalof recursvely restartabletructuress to
controlthe amountof end-to-endunavailability. This
is achiered by:

e Systemstructurethatleadsto goodfault contain-
ment,henceincreasingMTBF.

Systenstructurethatallows for boundedportions

graciouslyrestartedwith little or no advancewarning.

Onepossibleway to build sucha systemis to usethe

following constructionatecursve definition: Thesim-

plestRR system(basecas@ is a softwarecomponent
that can be safely restartedwith little or no advance
warning. A generalRR system(recussive caseg is an

assemblyof recursvely restartablesubsystemsgom-

posedaccordingo thefollowing five guidelines.

It's OK to say “No”. The interfacesalongwhich
we “glue” componentgogethershould provide suf-
ficiently weak guaranteesso they can occasionally
restartwith no advancewarning, yet not causetheir
callersto hangor crash.This guidelinepusheghere-
sponsibilityof dealingwith “No” from the provider of
a serviceto the userof that service. Inspiredby the
work on distributed datastructureg9] andthe end-to-
endargument]16], this guidelineachievesa high level
of decouplingandfault containmenbetweensubsys-
tems.

Trade precision/consistency for availability .
Complementaryo the previous one, this guidelineis
basedon the obsenration that applicationscan often
trade precision or consisteng for higher availabil-
ity [10, 6, 18, 20]. Theability to make suchtradeofs
dynamically and automaticallyduring transientfail-
uresmalkes a systemmuch more amenableo partial
restarts.Intercomponenprotocolsshouldallow com-
ponentsto make this type of decisionsdynamically;
they should provide application-specific consis-
teng/precisionmeasuresnd a consisteng/precisian

of the systemto berestartedin orderto decrease Utility function(e.g.,“absoluteconsisteng is twice as

restarttime,i.e., MTTR

Monitoring softwarethatreactsrapidly to subsys-
temunavailability, to decreas®TTR

Proactve rejuvenationof software components,
to avert failuresrelatedto poorresourcananage-
ment,andthusincreaseMTBF.

In this sectionwe will summarizethe recursve
restartabilityconceptand direct the readerto [2] for
details.

To definearecursiely restartabldRR) systemwe
take both a functionaland a constructionabpproach.
From a functional point of view, a RR systemis one

goodasmissingthelasttwo updates”).

Usesoft statewith announce/listen Soft stateand
announce/listemave long beenthe favorites of wide
areanetwork protocols[21, 4, 5, 15]. Announce/listen
makesthe default assumptiorthata components un-
available unlessit saysotherwise;soft statecan pro-
vide information that will carry a systemthrougha
transientfailureof thestate$ authoritatve datasource.
Keepingmostsharedstatesoft will thereforeincrease
the systems$ tolerancefor restarts. The use of an-
nounce/listerwith soft stateallows restartsand“cold
starts” to be treatedas one and the same,using the
samecodepath. Moreover, comple recovery codeis
no longerrequired,thusreducingthe potentialfor la-



tentbugsandspeedingup recovery.

Use fine grain workloads and communication.
Glue protocolsshouldenforcefine grain interactions
betweersubsytemsto allow thesesubsystemt com-
plete outstandingwork rapidly. This property helps
in reducingthe MTTR because rebootcanbe done
muchsooner A goodexampleof fine grainworkload
requirementss HTTP: theWebasawholeexhibitsthe
propertythat individual sener processean be qui-
escedrapidly, since HTTP connectionsare typically
short-lved, and seners are extremely loosely bound
to their clients, given that the protocolitself is state-
less. This makesthemhighly restartableandleadsto
thesimplereplicationandfailover techniquegoundin
large clusterbasednternetservices.

Decomposefunctionality orthogonally. Indepen-
dentsubsystemshat do not requirean understanding
of eachothers statemachinesn orderto functionare
saidto be mutually orthogonal. Compositionsof or-
thogonalsubsystemsxhibit high toleranceto compo-
nentrestarts,allowing the systemas a whole to con-
tinuefunctioning,perhapswith reducedutility, in spite
of transientfailures. Examplesof orthogonalmech-
anismsinclude deadlockresolutionin database$7],
software-basedault isolation[19], the useof branch
history tablesin CPUs, etc. We adwcatethat sub-
systemsbe centeredaroundan independentocus of
control, andinteractwith othersubsystemsia events
postedusinganasynchronousechanism.

A recursvely restartablestructureleadsto a num-
berof desirableproperties.Dueto the very loosecou-
pling enforcedby the assemblyules,componentsre
ableto toleratetemporaryunavailability of peercom-
ponentsand can gracefully survive failuresthat are
resohed by restart,henceimproving fault tolerance.
At the sametime, dueto the ability to restartonly a
boundedpartof thesystemjt becomepossibleto sur
vive failureswith little or no lossin availability. If we
picturea RR systemasa “restartabilitytree” of com-
ponents/subsystemsge canseethat parentnodescan
provide progressiely degradedserviceas their chil-
drenbecomeunavailable,andthengracefullyreturnto
full serviceasthechildrenrecorer.

In additionto theseintrinsic propertieswe canuse
an execution infrastructue (El) to further improve

availability. TheEl is alayerunderneatta RR system,
thatis in chage of monitoring the progressof com-
ponents/subsystenadrestartthemwheneer neces-
sary Monitoring is doneby usingapplication-specific
probes,alongwith end-to-endchecks,suchasverify-
ing theresponséo awell-known query Theexecution
infrastructureperformstwo typesof restarts:reactve,
in orderto repair a failed componentand proactve,
in order to rejuvenatecomponentghat are aboutto
fail [11]. In additionto monitoring,the executionin-
frastructurecanalsoperformavarietyof runtimemea-
surements.

The use of the El automatesadministratie tasks
andoffersconsiderabldlexibility, suchastailoringthe
rejuvenationregimen in an application-specifiavay.
It enablesgradualrejuvenationof the entire system
throughrolling subsystenrejuvenationswithout ever
discontinuingthe end-to-endservice. Finally, com-
bining recursve restartabilitywith the EIl provides a
way of increasingavailability thatis complementary
to otherhigh availability mechanismssuchasredun-
dang with failover.

5 Measuring Recursively Restartable Sys-
tems

Having briefly describedrecursve restartability we
will nowv shav somepreliminaryideason howv a RR
structurecanhelpin assessing systems availability
basedon the characteristic®f its subsystemsThese
ideashave notbeendvalidatedin practiceyet, but pro-
vide a startingpointfor our researctagenda.

To evaluatea RR system,one must startfrom the
leaves of the restartabilitytree suggestedn section4
andproceedioward the root. We first reasonin isola-
tion aboutthe componentat eachlevel and,basedon
the protocolsthat glue themtogetherwe combinethe
characteristicinto a propertyof the composition.On-
going, runtimemeasurememerformedby the execu-
tion infrastructureclosesafeedbacKoop thatcorrects
thereasoningat eachlevel.

Therearea numberof factorsthatenterin the indi-
vidual evaluationof a leaf component. We must ob-
tain an availability metric, which in its simplestform
may be just a measureof how availablea component
is over its lifetime (e.g.,“has 4 nines”). This canbe



obtainedusing various methods,suchas fault injec-

tion, heuristicevaluationsgtc. We alsoneedto capture
therestartabilitycharacteristiof eachcomponenti.e.

how tolerantit is to beingrestartedhow muchadwance
noticeit requireshow long recorery takes,etc.

Once we have an availability and a restartability
value for eachleaf component,we proceedup the
restartabilitytreeandcomposeheir values.Following
aresomeexamplesof how to reasonaboutthe aggre-
gationsof components/subsyshsbasedon the com-
positionmethods.

The “OK to say No” rule, combinedwith dynam-
ically trading consisteng/precison for availability,
helpsus backpropagatevailability and restartability
characteristice®f componentshroughthe systemcall
graph. Eachcomponent4 making a call to compo-
nentsB andC' is a multiplicative filter, with B’s and
C’s characteristicas inputs, and their productas an
outputcharacteristic.

Usingthe “soft statewith announce/listentule, we
canplaceupperboundson the availability of the soft
state$ authoritatve sourcesandthencomputefor how
long the subsytemghat dependon that soft statecan
survive without the soft statehaving beenrefreshed.
This caneasily be donebasedon the timeoutassoci-
atedwith the freshnes®f the soft state[15]. The dif-
ferencejf ary, betweertheavailability of the authori-
tative sourceandthat of the soft statewill translaten
unavailability exposedo the dependentomponents.

We adwcatedfine grain workloadsand communi-
cationbetweercomponentsn orderto allow for rapid
guiescingof subsystemsFor a given subsystemye
canplaceanupperboundonthequiescdime by taking
the maximumof the expectedcompletiontimesof the
tasksit senes. This will be the upperboundon how
long it takes for the entire subsystento be quiesced
and, hence readiedfor restart. Reducingthe time to
quiescewill reducethe MTTR

Measuringthe orthogonality of functionality de-
compositionandits effectsis difficult. However, we
shouldobsere thateachsubsystermepresents finite
statemachinefwo suchstatemachinewill beorthog-
onalif they do notshareary statesandarecompletely
decoupled.If no blocking calls crossthe boundaryof
the subsystemand no hard stateis sharedwith other
partsof the RR system,we canconcludethatthe two

systemsare orthogonaland can survive eachothers
unavailability.

This type of inferenceswith regard to availability
must be subjectedto a feedbackprocessthat adjusts
them basedon continuous,run-time data gathering.
Oneexampleof suchafeedbackoopis theonedriving
the rejuvenationschedule:componentejuvenationis
initially donebasedon the availability characteristics
of eachsubsystem As the history of reactve restarts
that curefailuresin that componentaccumulateswe
fine tunethe availability metric and adjustthe rate of
rejuvenationup or dovn, asneededfrequentreactve
restartswill promptmoreoftenrejuvenation.A recur
sively restartablestructureallows this to be doneeas-
ily, becauseeachcomponentcan be subjectedto an
individualizedrejuvenationregimen.

6 FutureWork

As proponentsof recursve restartability we needto
provide software architectsand developerswith suit-
abletoolsfor building andevaluatingRR systemsThe
only way to turn recursve restartabilityinto an easy-
to-usestructuringtool is by describinga simplemodel
and providing the right software supportfor applying
thatmodel.

Two major catayories of tools are required. First,
we needa tractableway of evaluatinghow restartable
agivensoftwarecomponents. For thiswe needto de-
velop a representate restartabilitymetricandan ac-
curateway to measurdt.

Secondwe needtools for determiningto what de-
greethe variousassemblyguidelinesare appliedin a
givensoftwareinfrastructure.lt is necessaryo evalu-
ate eachrule usingits own specificmetrics. For ex-
ample: the metrics describedin [20] can provide a
basisfor evaluatingconsisteng/availability tradeofs;
“hardness”of sharedstatecanbe measuredisingthe
soft statemodelfrom [15].

7 Conclusion

Whenmeasuringvailability, it’ simportantto measure
the system,the ervironment,andthe processof run-
ning the system.We try to addresgheseissuesby (a)
structuringthe systemappropriately(b) addinga level



of controlto theervironmentthroughthe executionin-
frastructureand(c) automatingheadministratiorpro-
cess.

Building RR systemsn a systematiavay requiresa
changen the way we architectsystemsanda frame-
work consistingof well-understooddesignrules. We
have madea first attemptat formulatingsucha frame-
work, while adwcatingthe paradigmof building ap-
plicationsas distributed systemsgven whenthey are
not distributed in nature. We shaved how, through
RR,we canreducethe MTTRandincreasehe MTBF,
hencancreasingavailability. By reducingM TT R, we

decreasdhe importanceof the MT BF' in assessing

availability.
We setforth a researchagendaaimedat validating
theseideasand verifying that RR canbe an effective

supplemento existing high availability mechanisms.

We hoperecursve restartabilitywill provide a simple
way to build highly available, highly measurableoft-
waresystems.
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