
Appears in Proceedingsof the1stWorkshopon EvaluatingandArchitectingSystemDependability(EASY),July 2001

Designingfor High Availability and Measurability

GeorgeCandea ArmandoFox
StanfordUniversity�

candea,fox � @cs.stanford.edu

Abstract

We propose a structuring model, called recursive
restartability, aimedat controlling theamountof end-
to-endunavailability andimproving themeasurability
of software infrastructureswith high availability re-
quirements.Recursive restartabilityexploits the ben-
efits of restartsat variouslevels within complex soft-
waresystemsandrelieson anexecutioninfrastructure
to monitor, cure,andrejuvenatesoftwarecomponents.
We show how systemarchitectscanmeasureandrea-
sonaboutthe availability of their systems,aslong as
thesearerecursively restartable.

1 Intr oduction

Rebootscanandshouldbe turnedinto a reliabletool
for achieving high availability in critical software in-
frastructures.Although rebootsarenot considereda
gracefulwayto keepasystemrunning,mainlybecause
mostsystemsarenot suitablydesigned,restartinghas
a numberof valuableproperties.We proposea struc-
turingmodelcenteredaroundthenotionof fixing bugs
throughreboot.This modelsystematizesa numberof
known techniques,in anattemptto turn “HA folklore”
into awell-understoodtool.

Wealsocontendthat,besideshighavailability, mea-
surability is an importantrequirementfor dependable
softwareinfrastructures,andmustbe an intrinsic part
of thedesign.Justlike debugability andperformance,
measurabilitycannotbeanafterthought.

Thepaperprovidesmotivationfor usingrestartsasa
way to achieve high availability in section2, andsec-
tion 3 arguesfor why measurabilityshouldbeincluded
asa first-classcitizen in thedesignof softwareinfras-
tructuresfor highly availableservices.Section4 de-

scribesrecursive restartability– ourproposedstructur-
ing modelfor highly availablesoftwaresystems– and
section5 describeshow recursively restartablesystems
arehighly measurableandmakeavailability evaluation
tractable.Section6 describesbriefly our plansfor fu-
turework, andsection7 concludes.

2 Why Restart-BasedHigh Availability?

Webelieve thatrebootsareavaluabletool for running
infrastructuresthat provide serviceswith high avail-
ability requirements. In this section we will show
how the“restartconcept,” commonlyviewedasanevil
sledgehammer, canin fact be turnedinto a fine grain
scalpelthat improvestheavailability of suitablystruc-
turedsystems.

One of the largest sourcesof unavailability in
today’s software systems are latent and pseudo-
nondeterministicbugs [13, 12, 3, 8, 1]. Commonly
known asHeisenbugs,they aredifficult to reproduce,
or dependon the timing of external events. Tripped
by araceconditionor otherunforeseencircumstances,
they causesystemsto crash,deadlock,spin, livelock,
leakmemory, createandusedanglingpointers,corrupt
theheap,etc.Systemadministratorswill readilyattest
that, often the besthigh-confidenceway of bringing
sucha “wedged” systembackto normal is to restart.
Even if thesourceof suchbugscanbe tracked down,
it maybemorecost-effective to simply livewith them,
aslong asthey occursufficiently infrequentlyandre-
bootingallows the systemto work within acceptable
parameters.As complexity increases,we canexpect
Heisenbugsto becomeeven morefrequent,makingit
increasinglymoredifficult to achieve highavailability.

Although rebootsare dreadedby most of us, they
do have threeimportantpropertiesthatmake themde-

1



sirable. First, a restartwill unequivocallyreturn soft-
ware to its start state, which is usually the bestun-
derstoodandbesttestedstateof the system. For ex-
ample, the Patriot missile defensesystem,useddur-
ing the Gulf War, had a bug in its control software
thatcouldbecircumventedonly by rebootingevery 8
hours[14]. It wasdue to an error in a mathematical
computation,which would accumulateandeventually
renderthesystemineffective.

Second,rebootsprovide a high confidenceway to
reclaim resources that are staleor leaked. At a ma-
jor Internetportal, the front endApacheweb servers
areroutinelyquiesced,killed andrestarted,in orderto
controlknown memoryleaksthataccumulatequickly
underheavy load.

Finally, thethird advantageis thatrebootingis easy
to understand and employ. Simple mechanisms,in
general,benefit from being easyto implement,easy
to debug,andeasyto automate.

Basedon theseproperties,we arguethat it is possi-
ble to improve overall systemavailability for any in-
frastructure,provided it is suitablystructuredandwe
canindependentlyrestartcomponentsthat have gone
astray. It is critical that thesystemstructuresynergize
with a restart-basedhigh availability solution,andwe
describesucha structurein section4. It is calledre-
cursive restartabilityand, in proposingit, we are in-
spiredby thebeneficeffectsthattheACID transaction
modelandtheobjectmodelhadon thequality of soft-
ware.Not only did theseconceptsgreatlysimplify the
designof complex softwaresystems,but they alsopro-
videdacleanframework within which to reasonabout
thebehavior of suchsystems.

3 Measurability –A Critical SystemProperty

Reasoningaboutsoftwareinfrastructuresis becoming
increasinglymoredifficult, dueto theirscaleandcom-
plexity. A pervasive exampleis that of the Internet,
which appearsto have takenon a life of its own; most
of the recentstudiestreatit asa little-understoodsys-
tem that requiresexperimentalratherthantheoretical
investigation. The systemsthat are particularly sub-
jectedto suchincreasesin scalearetheinfrastructures
we dependon in our day-to-daylives.Fromair traffic
control to healthservices,banking,ande-commerce,

we interact and count on the availability of various
softwaresystemsatevery stepwe make.

To counter the increasingincomprehensibilityof
software,we mustgive infrastructureoperatorsbetter
tools for designing,acquiring,and tuning highly de-
pendablesystems.Suchtoolsrequireareliablewayof
measuring,aswell asreasoningabout,theavailability
of their systems.

Availability is usuallydefinedin termsof themean
time betweenfailures(MTBF) and the meantime to
repair (MTTR) as the expression �������
	��������������� . Al-
thoughthe expressionis simple,measuringMTBF is
difficult, becauseit requiresthat we compresstime
intervals of yearsor decadesto short time spansfor
experimentalpurposes.The difficulty of suchexperi-
mentsis compoundedby the needto develop a fault-
load that is representative of what a deployed system
mayencounter. Moreover, experimentsaimedat mea-
suringtheMTBFof largescaleinfrastructuresaresim-
ply intractable.

Consequently, the availability characteristicsof to-
day’s productionsystemsareusuallyevaluatedbased
on the “gut feelings” of more or lessskilled people.
Wecontendthat,assessingtheavailability of asystem,
whetherbasedon gut feelingsor usingcomprehensive
tools, canbe madea lot easierwhenthe systemwas
designedwith that task in mind. We thereforeargue
for measurability asa built-in propertyof thesystem,
andbelieve thatrecursive restartabilityprovidesa suf-
ficiently flexible framework for measurability.

Deployed software systems undergo constant
changeand reconfiguration,but changeis the anath-
emaof dependability. Highly availableinfrastructures
must,therefore,provide the right structureandhooks
for ongoingavailability measurements.Oneexample
of sucha hookarestatisticsof how oftenandfor how
long eachsubsystemwasunavailable/failed; basedon
how thesesubsystemsare composedinto the larger
system,we can reasonabout the overall availability
characteristics,aided by structure, modularity, and
abstraction.

Similarmechanismshavelongbeenprovidedfor the
sakeof performancemeasurements,bothatthelevel of
platformsandapplications.Examplesrangefrom per-
formancecountersandcachemisscountersin CPUs,
to lock grab/delaycountersin databasesystems,and

2



accessmetricsin webservers. Performancemeasures
areevenusedin somedevicesto provide fail stopbe-
havior, suchasI/O subsystemsthatattemptto predict
imminentfailures.

Finally, asystem’s availability cannotbeconsidered
in isolation. End-to-endavailability is the resultof a
tight interplaybetweensoftware,environment,andad-
ministrationprocess.In fact, the Gartnergroupesti-
matesthat40%of downtime in corporateinformation
infrastructuresareduetomanagementprocessfailures,
with the remainderof 40% due to application fail-
ures,andonly 20% dueto hardwarebreakdown [17].
It is for this reasonthat we provide eachrecursively
restartablesystemwith anexecutioninfrastructure,de-
scribedin thenext section,to improve an administra-
tor’s ability to reasonabouttheentiresystem.

Havingmotivatedtheuseof restart-basedhighavail-
ability andtheinclusionof measurabilityasacoresys-
tem property, we now proceedto describerecursive
restartability, a structuringmodelwhich satisfiesboth
theserequirements.

4 Recursively RestartableStructures

Themaingoalof recursively restartablestructuresis to
control the amountof end-to-endunavailability. This
is achievedby:

 Systemstructurethatleadsto goodfault contain-
ment,henceincreasingMTBF.

 Systemstructurethatallowsfor boundedportions
of thesystemto berestarted,in orderto decrease
restarttime, i.e.,MTTR.

 Monitoringsoftwarethatreactsrapidlyto subsys-
temunavailability, to decreaseMTTR.

 Proactive rejuvenationof software components,
to avert failuresrelatedto poorresourcemanage-
ment,andthusincreaseMTBF.

In this section we will summarizethe recursive
restartabilityconceptand direct the readerto [2] for
details.

To definea recursively restartable(RR) system,we
take both a functionalanda constructionalapproach.
From a functionalpoint of view, a RR systemis one

in whichcollectionsof components/subsystemscanbe
graciouslyrestartedwith little or no advancewarning.
Onepossibleway to build sucha systemis to usethe
following constructionalrecursivedefinition:Thesim-
plestRR system(basecase) is a softwarecomponent
that can be safely restartedwith little or no advance
warning. A generalRR system(recursivecase) is an
assemblyof recursively restartablesubsystems,com-
posedaccordingto thefollowing fiveguidelines.

It’ s OK to say “No” . The interfacesalongwhich
we “glue” componentstogethershould provide suf-
ficiently weak guarantees,so they can occasionally
restartwith no advancewarning, yet not causetheir
callersto hangor crash.This guidelinepushesthere-
sponsibilityof dealingwith “No” from theprovider of
a serviceto the userof that service. Inspiredby the
work on distributeddatastructures[9] andtheend-to-
endargument[16], thisguidelineachievesahigh level
of decouplingandfault containmentbetweensubsys-
tems.

Trade precision/consistency for availability .
Complementaryto the previous one, this guidelineis
basedon the observation that applicationscan often
trade precision or consistency for higher availabil-
ity [10, 6, 18, 20]. Theability to make suchtradeoffs
dynamically and automaticallyduring transientfail-
uresmakes a systemmuch moreamenableto partial
restarts.Inter-componentprotocolsshouldallow com-
ponentsto make this type of decisionsdynamically;
they should provide application-specific consis-
tency/precisionmeasuresanda consistency/precision
utility function(e.g.,“absoluteconsistency is twice as
goodasmissingthelasttwo updates”).

Usesoft statewith announce/listen. Soft stateand
announce/listenhave long beenthe favorites of wide
areanetwork protocols[21, 4, 5, 15]. Announce/listen
makesthedefault assumptionthata componentis un-
availableunlessit saysotherwise;soft statecanpro-
vide information that will carry a systemthrough a
transientfailureof thestate’sauthoritative datasource.
Keepingmostsharedstatesoft will thereforeincrease
the system’s tolerancefor restarts. The use of an-
nounce/listenwith soft stateallows restartsand“cold
starts” to be treatedas one and the same,using the
samecodepath. Moreover, complex recovery codeis
no longerrequired,thusreducingthepotentialfor la-

3



tentbugsandspeedinguprecovery.

Use fine grain workloads and communication.
Glue protocolsshouldenforcefine grain interactions
betweensubsytems,to allow thesesubsystemsto com-
plete outstandingwork rapidly. This propertyhelps
in reducingthe MTTR, becausea rebootcanbe done
muchsooner. A goodexampleof fine grainworkload
requirementsis HTTP:theWebasawholeexhibitsthe
propertythat individual server processescan be qui-
escedrapidly, sinceHTTP connectionsare typically
short-lived, and servers are extremely loosely bound
to their clients,given that the protocol itself is state-
less. This makesthemhighly restartableandleadsto
thesimplereplicationandfailover techniquesfoundin
largecluster-basedInternetservices.

Decomposefunctionality orthogonally. Indepen-
dentsubsystemsthat do not requirean understanding
of eachother’s statemachinesin orderto functionare
said to be mutually orthogonal. Compositionsof or-
thogonalsubsystemsexhibit high toleranceto compo-
nent restarts,allowing the systemasa whole to con-
tinuefunctioning,perhapswith reducedutility, in spite
of transientfailures. Examplesof orthogonalmech-
anismsinclude deadlockresolutionin databases[7],
software-basedfault isolation[19], the useof branch
history tablesin CPUs, etc. We advocatethat sub-
systemsbe centeredaroundan independentlocus of
control,andinteractwith othersubsystemsvia events
postedusinganasynchronousmechanism.

A recursively restartablestructureleadsto a num-
berof desirableproperties.Dueto thevery loosecou-
pling enforcedby theassemblyrules,componentsare
ableto toleratetemporaryunavailability of peercom-
ponentsand can gracefully survive failures that are
resolved by restart,henceimproving fault tolerance.
At the sametime, due to the ability to restartonly a
boundedpartof thesystem,it becomespossibleto sur-
vive failureswith little or no lossin availability. If we
picturea RR systemasa “restartabilitytree” of com-
ponents/subsystems,we canseethatparentnodescan
provide progressively degradedserviceas their chil-
drenbecomeunavailable,andthengracefullyreturnto
full serviceasthechildrenrecover.

In additionto theseintrinsic properties,we canuse
an execution infrastructure (EI) to further improve

availability. TheEI is a layerunderneathaRRsystem,
that is in charge of monitoring the progressof com-
ponents/subsystemsandrestartthemwhenever neces-
sary. Monitoring is doneby usingapplication-specific
probes,alongwith end-to-endchecks,suchasverify-
ing theresponseto awell-known query. Theexecution
infrastructureperformstwo typesof restarts:reactive,
in order to repair a failed component,and proactive,
in order to rejuvenatecomponentsthat are about to
fail [11]. In additionto monitoring,the executionin-
frastructurecanalsoperformavarietyof runtimemea-
surements.

The use of the EI automatesadministrative tasks
andoffersconsiderableflexibility, suchastailoringthe
rejuvenationregimen in an application-specificway.
It enablesgradualrejuvenationof the entire system
throughrolling subsystemrejuvenations,without ever
discontinuingthe end-to-endservice. Finally, com-
bining recursive restartabilitywith the EI provides a
way of increasingavailability that is complementary
to otherhigh availability mechanisms,suchasredun-
dancy with failover.

5 Measuring Recursively Restartable Sys-
tems

Having briefly describedrecursive restartability, we
will now show somepreliminary ideason how a RR
structurecanhelp in assessinga system’s availability
basedon the characteristicsof its subsystems.These
ideashave notbeendvalidatedin practiceyet,but pro-
videastartingpoint for our researchagenda.

To evaluatea RR system,one must start from the
leavesof the restartabilitytreesuggestedin section4
andproceedtoward the root. We first reasonin isola-
tion aboutthecomponentsat eachlevel and,basedon
theprotocolsthatgluethemtogether, we combinethe
characteristicsinto a propertyof thecomposition.On-
going,runtimemeasurementperformedby theexecu-
tion infrastructureclosesa feedbackloop thatcorrects
thereasoningateachlevel.

Therearea numberof factorsthatenterin the indi-
vidual evaluationof a leaf component.We mustob-
tain an availability metric, which in its simplestform
may be just a measureof how availablea component
is over its lifetime (e.g., “has 4 nines”). This canbe

4



obtainedusing variousmethods,suchas fault injec-
tion,heuristicevaluations,etc.Wealsoneedto capture
therestartabilitycharacteristicof eachcomponent,i.e.
how tolerantit is to beingrestarted,how muchadvance
noticeit requires,how long recovery takes,etc.

Once we have an availability and a restartability
value for each leaf component,we proceedup the
restartabilitytreeandcomposetheirvalues.Following
aresomeexamplesof how to reasonabouttheaggre-
gationsof components/subsystemsbasedon thecom-
positionmethods.

The “OK to sayNo” rule, combinedwith dynam-
ically trading consistency/precision for availability,
helpsus backpropagateavailability and restartability
characteristicsof componentsthroughthesystemcall
graph. Eachcomponent� making a call to compo-
nents� and � is a multiplicative filter, with � ’s and
� ’s characteristicsas inputs,and their productasan
outputcharacteristic.

Usingthe“soft statewith announce/listen”rule,we
canplaceupperboundson the availability of the soft
state’sauthoritativesources,andthencomputefor how
long the subsytemsthat dependon that soft statecan
survive without the soft statehaving beenrefreshed.
This caneasilybe donebasedon the timeoutassoci-
atedwith thefreshnessof thesoft state[15]. Thedif-
ference,if any, betweentheavailability of theauthori-
tative sourceandthatof thesoft statewill translatein
unavailability exposedto thedependentcomponents.

We advocatedfine grain workloadsandcommuni-
cationbetweencomponentsin orderto allow for rapid
quiescingof subsystems.For a given subsystem,we
canplaceanupperboundonthequiescetimeby taking
themaximumof theexpectedcompletiontimesof the
tasksit serves. This will be the upperboundon how
long it takes for the entiresubsystemto be quiesced
and,hence,readiedfor restart. Reducingthe time to
quiescewill reducetheMTTR.

Measuring the orthogonality of functionality de-
compositionand its effects is difficult. However, we
shouldobserve thateachsubsystemrepresentsa finite
statemachine;two suchstatemachineswill beorthog-
onalif they do not shareany statesandarecompletely
decoupled.If no blockingcallscrosstheboundaryof
the subsystemandno hardstateis sharedwith other
partsof theRR system,we canconcludethat the two

systemsare orthogonaland can survive eachother’s
unavailability.

This type of inferenceswith regard to availability
must be subjectedto a feedbackprocessthat adjusts
them basedon continuous,run-time data gathering.
Oneexampleof suchafeedbackloopis theonedriving
the rejuvenationschedule:componentrejuvenationis
initially donebasedon the availability characteristics
of eachsubsystem.As the history of reactive restarts
that cure failuresin that componentaccumulates,we
fine tunethe availability metric andadjustthe rateof
rejuvenationup or down, asneeded:frequentreactive
restartswill promptmoreoftenrejuvenation.A recur-
sively restartablestructureallows this to be doneeas-
ily, becauseeachcomponentcan be subjectedto an
individualizedrejuvenationregimen.

6 Future Work

As proponentsof recursive restartability, we needto
provide softwarearchitectsanddeveloperswith suit-
abletoolsfor building andevaluatingRRsystems.The
only way to turn recursive restartabilityinto an easy-
to-usestructuringtool is by describingasimplemodel
andproviding the right softwaresupportfor applying
thatmodel.

Two major categoriesof tools are required. First,
we needa tractableway of evaluatinghow restartable
agivensoftwarecomponentis. For thisweneedto de-
velop a representative restartabilitymetric andan ac-
curateway to measureit.

Second,we needtools for determiningto what de-
greethe variousassemblyguidelinesareappliedin a
givensoftwareinfrastructure.It is necessaryto evalu-
ateeachrule using its own specificmetrics. For ex-
ample: the metrics describedin [20] can provide a
basisfor evaluatingconsistency/availability tradeoffs;
“hardness”of sharedstatecanbe measuredusingthe
soft statemodelfrom [15].

7 Conclusion

Whenmeasuringavailability, it’s importantto measure
the system,the environment,and the processof run-
ning thesystem.We try to addresstheseissuesby (a)
structuringthesystemappropriately, (b) addinga level

5



of controlto theenvironmentthroughtheexecutionin-
frastructure,and(c)automatingtheadministrationpro-
cess.

Building RR systemsin asystematicway requiresa
changein theway we architectsystems,anda frame-
work consistingof well-understooddesignrules. We
have madea first attemptat formulatingsucha frame-
work, while advocatingthe paradigmof building ap-
plicationsasdistributed systems,even whenthey are
not distributed in nature. We showed how, through
RR,we canreducetheMTTRandincreasetheMTBF,
henceincreasingavailability. By reducing������� , we
decreasethe importanceof the ������� in assessing
availability.

We setforth a researchagendaaimedat validating
theseideasandverifying that RR canbe an effective
supplementto existing high availability mechanisms.
We hoperecursive restartabilitywill provide a simple
way to build highly available,highly measurablesoft-
waresystems.

References

[1] E. Adams. Optimizing preventative serviceof soft-
wareproducts.IBM J. Res.Dev., 28(1):2–14,1984.

[2] G. CandeaandA. Fox. Recursiverestartability:Turn-
ing therebootsledgehammerinto a scalpel. In Work-
shoponHot Topicsin OperatingSystems, Elmau,Ger-
many, 2001.

[3] T. C. Chou. Beyondfault tolerance.IEEE Computer,
30(4):31–36,1997.

[4] S. Deering, D. Estrin, D. Farinacci, V. Jacobson,
C. Liu, L. Wei, P. Sharma,andA. Helmy. Protocol
independentmulticast (PIM), sparsemodeprotocol:
Specification,March1996. InternetDraft.

[5] S.Floyd, V. Jacobson,C. Liu, andS.McCanne.A Re-
liableMulticastFramework for Light-WeightSessions
andApplicationLevel Framing. In ACM SIGCOMM
’95, pages342–356,Boston,MA, Aug 1995.

[6] A. Fox andE. A. Brewer. ACID confrontsits discon-
tents:Harvest,yield, andscalabletolerantsystems.In
SeventhWorkshoponHot TopicsIn OperatingSystems
(HotOS-VII), Rio Rico,AZ, March1999.

[7] J. Gray. Notes on data base operating systems.
In R. Bayer, R. M. Graham, J. H. Saltzer, and
G. Seegmüller, editors, Operating Systems,An Ad-
vancedCourse, volume60, pages393–481.Springer,
1978.

[8] J.Gray. Why docomputersstopandwhatcanbedone
aboutit? In Proc. Symposiumon Reliability in Dis-
tributedSoftware andDatabaseSystems, pages3–12,
1986.

[9] S. D. Gribble, E. A. Brewer, J. M. Hellerstein,and
D. Culler. Scalable,distributeddatastructuresfor in-
ternetserviceconstruction.In Symposiumon Operat-
ing SystemDesignand Implementation, page??,San
Diego,CA, October2000.

[10] J. M. Hellerstein,P. J. Haas,andH. J. Wang. Online
aggregation.In ACM–SIGMODInternationalConfer-
enceonManagementof Data, Tucson,AZ, May 1997.

[11] Y. Huang,C. M. R. Kintala, N. Kolettis, and N. D.
Fulton. Softwarerejuvenation:Analysis,moduleand
applications. In International Symposiumon Fault-
Tolerant Computing, pages381–390,1995.

[12] D. Milojicic, A. Messer, J.Shau,G.Fu,andA. Munoz.
Increasingrelevanceof memory hardware errors. a
casefor recoverableprogrammingmodels. In ACM
SIGOPSEuropeanWorkshop”Beyond the PC: New
Challengesfor theOperatingSystem”, Kolding,Den-
mark,Sept.2000.

[13] B. Murphy and N. Davies. Systemreliability and
availability driversof Tru64 UNIX. In Proceedings
of the29thInternationalSymposiumonFault-Tolerant
Computing, Madison,WI, February1999.IEEECom-
puterSociety. Tutorial.

[14] U. G. A. Office. Patriot missile defense:Software
problemled to systemfailureat Dhahran,SaudiAra-
bia. TechnicalReportGAO/IMTEC-92-26,1992.

[15] S. RamanandS. McCanne. A model,analysis,and
protocol framework for soft state-basedcommunica-
tion. In Proceedingsof theACM SIGCOMMConfer-
ence, Cambridge,MA, Sept.1999.

[16] J. Saltzer, D. Reed,andD. Clark. End-to-endargu-
mentsin systemdesign. ACM Transactionson Com-
puterSystems, 2(4):277–288,Nov. 1984.

[17] D. Scott. Making smart investmentsto reduceun-
planneddowntime.TacticalGuidelinesResearchNote
TG-07-4033,GartnerGroup,Stamford,CT, 1999.

[18] D. B. Terry, A. J.Demers,K. Petersen,M. J.Spreitzer,
M. M. Theimer, andB. B. Welch. Sessionguarantees
for weaklyconsistentreplicateddata. In Proceedings
of the InternationalConferenceon Parallel and Dis-
tributedInformationSystems, pages140–149,Austin,
TX, Sept.1994.

[19] R. Wahbe,S. Lucco, T. E. Anderson,andS. L. Gra-
ham.EfficientSoftware-BasedFault Isolation.In Pro-
ceedingsof the 14th ACM Symposiumon Operating
SystemsPrinciples(SOSP-14), 1993.

[20] H. Yu and A. Vahdat. Design and evaluation of a
continuousconsistency modelfor replicatedservices.
In Proceedingsof the Fourth Symposiumon Operat-
ing SystemsDesignandImplementation, pagepp.???,
Oct.2000.

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and
D. Zappala.RSVP:A New ResourceReservationPro-
tocol. IEEENetwork, 7(5),Sept.1993.

6


